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Motivation and Background

et Scremes UsigDeathes and Ther Draticks

In 1960 and following three decades iterative schemes with derivative are
more in focus like Newton's method , Jarrat type methods, King's Method
and many more. These schemes have following drawbacks:

1. Derivative are not availible frquently, their computational cost is also
questionable.

2. Their convergence deponds on the choice of initial guess. The method
does not converge if starting point lie in the vicinity of root.

Due to this, algorithms in which no derivative evaluation is needed are
more in concentration. This approach was firstly addressed by Steffensen
and later used by Alicia Cordero, Petkovic, Neta and many other
researchers.



Motivation and Background

Multi-step root solvers that use only information from the recent iteration
are called without memory root solvers and the root finding methods that
use information from the recent and previous iteration are known as
with-memory iterative root solvers. Traub defined multipoint iteration
function with memory as:

" Let z; represents p + 1 quantities xj, wi(Xj), ..., wp(X;), ( j > 1). If x¢q1
is calculated iteratively by

Xit1 = F (2, Zk—1, ooy Zk—p)

then F is called multipoint iteration function with memory.



Motivation and Background

Among all discussed methods, multi-step with-memory root solvers are of
more significance because they significantly improve the convergence speed
and computational efficiency of the without memory root solvers without
using any additional functional evaluations. Generally with-memory root
solvers are constructed by using one or more free parameters or
self-accelerators in any optimal derivative free without memory root solver.
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Motivation and Background

The construction of with-memory optimal root solvers are based on two
techniques;

@ By the use of inverse interpolation

@ Convergence of root solver depends on the choice of intial guess.

@ By the use of self accelerating parameters

@ Freedom of the choice of initial guess regarding the convergence of
root solver.

@ These techniques had been applied by Petkovi¢ and Dzuni¢ [12].
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Background

There are usually following two questions regarding the use of self
accelerating parameters:
@ How many parameters can be utilised at most?

@ What are the preferable functions for such type of acceleration?

@ If Newtonian polynomials are used what is the maximum no. of
points to pass?
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Motivation and Background

@ The number of parameters deponds upon the no. of points that an
iterative scheme has.

@ The Newtonian polynomials are preferrable for accelerating these
parameters.

@ The degree of Newtonian polynomials are dependent on the number
of availible nodes from the current and previous iterate.



Motivation and Background

Cordero et al.[2] presented a two-parametric with-memory family of
two-steps methods based on a without memory fourth order method of

Zheng having R-order of convergence at least 7 and its index of efficiency
is 1.913.

1 Ny (wim)

e - — = - 7 >
W, xm + b, f(xm) b, Né(xm)'gm 2N£(Wm)'m_ 1,

_ _ f (xm)
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Motivation and Background

Lotfi et al. in [10] presented a new tri-parametric with-memory method
based on without memory two-step variant of Steffensen’s method. It is
demonstrated that the R-order of convergence of (1) is at least 7.77200
and the efficiency index is 7.77200 ~ 1.98082.



Motivation and Background

Cordero and Torregrosa in [3] developed a three-step two-parametric
derivative free method by using the approximation f/(xy,) & f[Xm, Zm],

where z,, = X, + gf(xm)4 in the three-step iterative method of Sharma et
al. [14], which is given by:

Ym = Xm — %' m >0
L fm) +bF () F(ym)
m+1 — Ym f(Xm)_|-(b—2)f(ym) f[vaZm]’
) L (P+Q+ R)f(xm) (2)
m+1 m Pfum, Xm) + Qf [zm, Xm] + Rf [Ym, Xm]’
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Motivation and Background

where P = (xm — Ym)f (xm)f (Ym), Q@ = (Ym — tm)f(ym)f(um) and
R = (um — Xm)f (um)f (xm) with error equation

em+1 = 5 ((14+2b)c3 — c3)(c3 —2c3c0 +ca)ed +0(ed).  (3)

Obviously the error equation (3) cannot allows to improve the convergence
order of (2) by varying the free parameters g and b. Thus (2) cannot be
extended to with-memory root solver.
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Construction of Derivative Free Root Solver extendable to

with-memory

The main aim is to construct three-step derivative free without Memory
Method

@ Any optimal two-step derivative-involved method .
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Construction of Derivative Free Root Solver extendable to

with-memory

The main aim is to construct three-step derivative free without Memory
Method

@ Any optimal two-step derivative-involved method .

@ Alongwith a specific third step.

© We use weight function approach at the second step of any optimal
two-step with-derivative method followed by Newton'’s method in the
third step.

@ The first derivative arising at each step is calculated using suitable
approximations.

© In this way the convergence order of the proposed methods is
preserved and can be increased by varying the involved free
parameters.
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Construction of Derivative Free Root Solver extendable to

with-memory

Ym =
Zm = 2<va_)/m)y (4)
where f ;and f , are real functions such that f , is the well known
Newtons's scheme which involves the values f(xp) and f'(xy) providing
the quadratic convergence of the sequence x;, and f , requires the
previously computed values f(xy), f'(xn) and the new value f(y,) to
give the fourth order convergence.

Fiza Zafar,Saima Akram, Nusrat Yasmin,MoiDerivative Free Four Parametric Method with 06/03 15 / 47



Construction of Derivative Free Root Solver extendable to

with-memory

Based on any two-step with-derivative optimal method like (4), we design
a general three-step without-derivative method extendable to with-memory.

e We use a weight function S(up,) in the second step of (4) and add
another real function f 5, (Newton's method [11]) in the third step.

@ The values of first derivative involved in f |, f, and f ; are
approximated by

f1 = f[xmme]"i_qf(Wm)
f2 = f[meWm]+qf(Wm)rf[Yvam]+qf(Wm)+5(}/m_Wm)(}/m_
f3 = f[ymvzm]+f[zmv}/mrxm](zm_Ym)+f[zvammeva](zm_y

(Zm - Xm) + t(zm - Wm)(zm _)’m)(zm - Xm)

where u, = ?gmg and the scalars p, g, s and t are freely chosen
parameters. Hence, we obtain the following general three-step
method .
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Construction of Derivative Free Root Solver extendable to

with-memory

Ym f 1 (Xm: W), Wi = Xm + pf(xm), m >0,
Zm = fQ(vaWm:)/m>v
Xm+1 = f3(va Wm:}/m:zm): (5)

were f | is the famous Steffensen’s method [17] employing the values
f(xm) and f(wm), f , is selected such that it requires the previously
calculated values f(xp,), f(wn) and the new value f(yy,) preserving the
fourth order convergence and f ; is chosen such that it uses the already
computed values f(xp,), f(wn), f(ym) and the new value f(z,) to
provide the optimal eighth order convergence.
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with-memory

Construction of Derivative Free Root Solver extendable to

For instance, consider the optimal fourth order two-step King's method [7]

. f(Xm)
Ym = Xm_f/(Xm), >0,

_ _ f(ym) f(xm) + af (ym) 3
= I ) Fxm) + (@ = 2)f(m) C
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Construction of Derivative Free Root Solver extendable to

with-memory

Applying the above procedure (5) we propose the following without
memory optimal eighth order modification of (6) having no derivative:
f (xm)

f[Xm, wm| + gf (W)
f(xm) + af (ym)
Xm) + (2 = 2)f (ym)

Wi = Xm + pf(Xm), m >0,

Ym = Xm—

Zm = Ym —S(Um)f(

5 f()’m)
F[Ym, W] + af (Wm) + 5(Ym — Wm) (Ym — Xm) '
Xm+1 = Zm_f(Qz::)v (7)

where up, = ;g:;,a €R, Qm = ym zm| + flzm, Ym, Xm|(Zm — ym)

+f[zmv Ymi Xm, Wm](zm - ,Vm)<zm _Xm> + t<zm - Wm)(zm _Ym)(zm - Xm)y
p,q,s and t are free parameters. The following theorem holds by imposing
the conditions on S(uy,) to achieve optimal order of convergence for (7).
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Convergence Analysis of Derivative Free Root solver

Theorem

Let g € | be a simple root of a sufficiently differentiable function

f:l CR— R, where | C R js an open set and the starting point xg is
close enough to g. Then, the scheme (7) is eighth order convergent if
5(0) =1,5(0) = —1,5"(0) = —2 and S""(0) = 0, and possesses the
following error equations

1
emit = (@ +9) (1+pa)*(2aq°pef + 4ageopey +2ac; pey
1

—|—2claq2 +2ci1qcy +4craqey — cicz + 2clc22 + 2c1c22 +s) X
(—t + ci¢c4 + s — oeicz3 + 2c23c1 + 2qc2201 + 2clac23 + 4(:1qc22
+2cc1ag° + 2.ac23pc12 + 4aq(:22pc12 + 2c2aq2p(:12)e§7

+0(ep), (8)

W) p> o

where, ¢, = wF(g) K 2
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Discussion about Error Term of Derivative Free Root solver

It can be noted that the coefficient of €3 in (8) disappears if
p= _—1, g=—c,s=cic3 and t = c1¢4, where ¢ = f'(g) and
(
_ ) k > 2. In this way our newly suggested without memory

k= TiF(g)”
method (7) can be extended to with-memory method by approximating

the involved parameters in such a way that the local order of convergence

is increased.

06/03 21 / 47
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Construction of Four-Parametric With Memory Root

Solvers

To construct with-memory method

@ the free parameters p, g, s and t are calculated by the formulas
_ 1 __fe) . _ "9 ., _ f*(g)
Pn= gy I = "or(g" T "o T T

forn=1,2,..., where f/, f7(g), f”(g), fV(g) are the best
approximations to f'(g), f"'(g), "’ (9), f(g),

since exact value of simple root is not known and consequently the
derivatives of the function cannot be computed. The approximations
f,£7(g), f(g), fv(g) are computed by Newton's Interpolating
polynomials of appropriate degrees respectively.
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Construction of Four-Parametric With Memory Root

Solvers

To construct with-memory method

@ the free parameters p, g, s and t are calculated by the formulas
_ 1 __fe) . _ "9 ., _ f*(g)
Pn= gy I = "or(g" T "o T T

forn=1,2,..., where f/, f7(g), f”(g), fV(g) are the best
approximations to f'(g), f"'(g), "’ (9), f(g),

since exact value of simple root is not known and consequently the
derivatives of the function cannot be computed. The approximations
f,£7(g), f(g), fv(g) are computed by Newton's Interpolating
polynomials of appropriate degrees respectively.

@ Accordingly we replace the free parameters p, g, s and t in (7) by

self-accelerators p,, g, Sn, ty and present the following with-memory
root solver:
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Construction of Four-Parametric With Memory Root

Solvers

f (Xm)
Ym = Xm = f[Xm, Wm] + qnf(Wm) Hm = +p”f(xm)' " Z 2,
_ f(xm) + af (Ym)
= IS T G 2) )
% f(}/m)
Flym, Wi] + Gnf (Wm) + 50 (Ym — Win) (Ym — Xm)
Xm+1 = Zm — f(QZ:)v (9)
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Construction of Four-Parametric With Memory Root

Solvers

where up, and Q,, are same as given in (7) and

-1 Ng' (wim ) Ne' (ym) Ny (zm)
Pn = N/ivqn ==y S = ——F th=—(—.
3 (Xm) 2NE (W) 6 24

The self-accelerators are calculated recursively using available information
in the current and previous iterations. Hence, we use Newton's
interpolation method to approximate the derivatives of f, where

Na(xm), N5 (W), Ne(ym) and Ny (zp) are Newton's interpolation
polynomials of degree four, five, six and seven respectively defined by:

(10)

Na(t) = Na(t;Xm, Zm—1,Ym—1, Wm—1,Zm—2),

Ns(t) = Ns(t; Wm, Xm, Zm—1, Ym—1, Wm—1, Zm—2),

Nﬁ(t) = Nﬁ(t;ymv Wmy Xm» Zm—1, Ym—1, Wm,l,szz),

N7(t) = N7 (t;Zm, Ym, Wi Xmy Zm—1, Ym—1, Wm—1, Zm—2),
for any m > 2.
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R- Order of convergence for Four-Parametric With
Memory Root Solvers

Let xo be an initial approximation sufficiently close to the root g of the
function f(x). If the parameters p,, qn, sp and t, are recursively computed
by the forms given in (10) then the convergence R-order of (9) is at least
15.51560 with the efficiency index 15.51560% ~ 1.98468.

We will now prove that the with-memory method (9) has convergence
order 15.51560 by applying the Herzberger's matrix method [6] provided
that self-accelerators given in (10) are used.
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R- Order of convergence for Four-Parametric With

Memory Root Solvers

By the Herzberger's matrix method, It can be seen that the spectral radius
of a matrix A®) = (h;)(1 < i,j < s) associated with a with-memory
one-step s—point method xx = f (xx_1, Xk—2, ..., Xk—s) is the lower bound
of the its order of convergence. The elements of this matrix are given by:

hij = number of function evaluations required at point xj_;,
Jj = 1,2,..,shjji-1=1fori=23, .5,
hij = 0, otherwise.
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R- Order of convergence for Four-Parametric With

Memory Root Solvers

On the other hand, the spectral radius of product of the matrices

A1, Ao, - -+, As, is the lower bound of order of an s—step method

f =f,of,0---0f _, where the matrices A, correspond to the iteration
steps f ,, 1 < r <'s. From the relations (9) and (10), we construct the
corresponding matrices as follows:

Xm+1 = f1(Zmu}/mvmememely}/mflyWmflvsz2)

1 1 1 1 1 1 1 17
1000 00O0TO
01 00 0O0CO0OTDO

A= 001 00O0O0TDO
0001 0O0O0O0]/|"
0 000O1O0O0TD0O
0 000O0O1O0TP0O
0000001 0]
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Numerical Results and Comparison

For the comparison, we have taken the following test functions:

fi(x) = 3 sin(x) + log(x*> +1), xop = 0.35, w = 0, (11)
H(x) = e ¥ Tgin(px) + xlog(xsin(x) +1), xo = 0.6, w =0,
A(x) = e P2 psin(px)e’ X111 =13, w = 155031

Numerical examples are taken from [10] to test the proposed with-memory
root solver (9) in comparison with the with-memory family of methods of
Kung and Traub [8] and with-memory method of Lotfi et al. [10] (1). All
numerical computations are performed using the programming package
Maplel6 with multiple-precision arithmetic by applying 3000 fixed floating
point arithmetic.

06/03 28 / 47
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Numerical Results and Comparison

Tables 1-3 display the behavior of the approximate values for the test
functions, where A(—d) denotes A x 10~?. For all the compared
with-memory methods, we have considered pp = sp = tp = 0.01, gp = 0.1.
From the obtained results it is evident that the proposed with-memory
method (9) has very fast convergence behavior than the with-memory
method of Kung and Traub [8] and Lotfi et al. [10] (1).
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Numerical Results and Comparison

Table 1: Results of With-memory method (1), by = go = to = —0.1

Functions  [f(x1)] [f (x2)] [f(x3)] [f(xa)]

A(x) 0.2(—3) 0.32(—21) 0.11(—155) 0.44(—1196)
£ (x) 0.58(—4) 0.24(—27)  0.12(—206) 0.98(—1592)
f(x) 0.45(—2) 0.41(—17)  0.10(—129) 0.10(—1007)
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Numerical Results and Comparison

Table 2: Results of With-Memory method (11), g, = 0.1

Functions  [F(x1)] _ |F(x2)] [F(x3)] [F(xa)]

A(x) 0.45(—6) 0.16(—51) 0.87(—435) 0.75(—3683)
f(x) 0.37(-1) 0.67(—13) 0.13(—110) 0.23(—939)
f(x) 0.79(-3) 0.16(—33) 0.21(—291)  0.34(—2477)

06/03 31/ 47
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Numerical Results and Comparison

Table 3: Results of With-memory method (9)

Functions  [f(x1)] [f(x2)] [f(x3)] |f(xa)]

A(x) 0.15(—6)  0.40(—39)  0.51(—391) 0.12(—3781)
£ (x) 0.40(—3)  0.34(—20)  0.12(—204) 0.38(—2049)
f(x) 0.98(—5)  0.22(—35)  0.10(—365) 0.1(—2998)
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Dynamical Behavior

We get important information about the stability and reliability of the
iterative methods by visualizing the dynamical properties of the associated
iterative root solvers.We investigate the comparison of the dynamical
planes associated to the with-memory root solver of Kung-Traub Method

with-memroy [8] (11) to some complex functions in the complex plane
using basin of attraction.

© The dynamical planes are obtained using technique on Matlab
R2013a software as follows:
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planes associated to the with-memory root solver of Kung-Traub Method

with-memroy [8] (11) to some complex functions in the complex plane
using basin of attraction.

© The dynamical planes are obtained using technique on Matlab
R2013a software as follows:

@ By taking a rectangle [—2,2] x [—2,2] of the complex plane, we
define a mesh of 1000 x 1000 initial approximations.
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Dynamical Behavior
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iterative methods by visualizing the dynamical properties of the associated
iterative root solvers.We investigate the comparison of the dynamical
planes associated to the with-memory root solver of Kung-Traub Method
with-memroy [8] (11) to some complex functions in the complex plane
using basin of attraction.

© The dynamical planes are obtained using technique on Matlab
R2013a software as follows:

@ By taking a rectangle [—2,2] x [—2,2] of the complex plane, we
define a mesh of 1000 x 1000 initial approximations.

© The starting point is in the basin of attraction of a root to which the
sequence of the iterative method converges
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Dynamical Behavior

We get important information about the stability and reliability of the
iterative methods by visualizing the dynamical properties of the associated
iterative root solvers.We investigate the comparison of the dynamical
planes associated to the with-memory root solver of Kung-Traub Method
with-memroy [8] (11) to some complex functions in the complex plane
using basin of attraction.

© The dynamical planes are obtained using technique on Matlab
R2013a software as follows:

@ By taking a rectangle [—2,2] x [—2,2] of the complex plane, we
define a mesh of 1000 x 1000 initial approximations.

© The starting point is in the basin of attraction of a root to which the
sequence of the iterative method converges

@ with an error approximation lower than 107> and at most 25 iteration.
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Dynamical Behavior

Each initial guess is assigned with a color depending upon to the number
of iterations for the iterative method to converge to any of the root of the
given function.

In this technique we use colormap 'Hot'. The color of the initial point will
be more intense if the sequence of the iterative method converges in less
number of iterations and if it is not converging to any of the roots after
maximum number of 25 iterations, then initial point is assigned with black
color.
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Dynamical Behavior

The proposed with-memory method (9) and Kung-Traub Method
with-memroy [8] (?7) are applied to the following complex functions:

e pi(z) = 2% — 1, with roots 1.0, —0.5000 + 0.86605/,
—0.5000 — 0.86605/,

Fiza Zafar,Saima Akram, Nusrat Yasmin,MoiDerivative Free Four Parametric Method with 06/03 35 / 47



Dynamical Behavior

The proposed with-memory method (9) and Kung-Traub Method
with-memroy [8] (?7) are applied to the following complex functions:

e pi(z) = 2% — 1, with roots 1.0, —0.5000 + 0.86605/,
—0.5000 — 0.86605/,

e py(z) = z°—1, with roots
1.0, 0.3090 4+ 0.95105/, — 0.8090 + 0.58778/, —0.8090 — 0.58778/,
0.30902 — 0.95105/

35 / 47

Fiza Zafar,Saima Akram, Nusrat Yasmin,MoiDerivative Free Four Parametric Method with 06/03



Dynamical Behavior

The proposed with-memory method (9) and Kung-Traub Method
with-memroy [8] (?7) are applied to the following complex functions:

e pi(z) = 2% — 1, with roots 1.0, —0.5000 + 0.86605/,
—0.5000 — 0.86605/,

e py(z) = z°—1, with roots
1.0, 0.3090 4+ 0.95105/, — 0.8090 + 0.58778/, —0.8090 — 0.58778/,
0.30902 — 0.95105/

° p3(z )—26_225+

1 - j i .
(l+ ) 4 3:421923 + 5/451122 4 4112+ % _3i
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Dynamical Behavior

The proposed with-memory method (9) and Kung-Traub Method
with-memroy [8] (?7) are applied to the following complex functions:

e p1(z) = 23 — 1, with roots 1.0, —0.5000 + 0.86605/,
—0.5000 — 0.86605/,
e py(z) = z°—1, with roots
1.0, 0.3090 + 0.95105/, — 0.8090 + 0.58778/, —0.8090 — 0.58778/,
0.30902 — 0.95105/
o p3(z) = 26 _ 2Z5 + (l+1)z4 o 3iJ£1923 + 5/451122 + ,'—411Z+ % —3i
@ with the solutions —1.0068 + 2.0047/,0.0281 + 0.9963/,0.0279 —
1.5225/,1.0235 — 0.9556/, 0.9557 — 0.0105/, —0.5284 — 0.5125;.
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Dynamical planes of the with-memory methods (9) and (11) for n = 3 and
b, = 0.01 applied to the functions p;(z), p2(z), p3(z) are depicted in the
figures 1-3. Color maps are provided and the number of iterations in which
the convergence occurs. From the following figures , it is easily observed
that the appearance of darker region shows that the iterative method (6)
consumes less number of iterations in comparison with (11). It is
concluded that the proposed with-memory method (9) is the best one
because its dynamical planes has less black and dark blue regions as
compared to the with-memory family of Kung and Traub (?7?) (KT).
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Color maps

Fiza Zafar,Saima Akram, Nusrat Yasmin,MoiDerivative Free Four Parametric Method with



Color maps

Fiza Zafar,Saima Akram, Nusrat Yasmin,MoiDerivative Free Four Parametric Method with



© we design a procedure to develop without memory optimal iterative
methods extendable to with-memory methods. Some examples are
given for this design.
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@ We also extend a proposed three-step without memory optimal
eighth-order method to an efficient with-memory method.
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© To achieve an efficient method with low computational load, we
proposed a with-memory method including three steps involving four
accelerators.
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@ It has been shown that the new method in Section 3 possesses very
high computational efficiency index 15.51560% ~ 1.98468 which is
even higher than many of the developed with-memory methods in the
literature,

0 eg. 75~ 1.913, of two-step with-memory method using two
accelerators discussed in [2].
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© we design a procedure to develop without memory optimal iterative
methods extendable to with-memory methods. Some examples are
given for this design.

@ We also extend a proposed three-step without memory optimal
eighth-order method to an efficient with-memory method.

© To achieve an efficient method with low computational load, we
proposed a with-memory method including three steps involving four
accelerators.

@ It has been shown that the new method in Section 3 possesses very
high computational efficiency index 15.51560% ~ 1.98468 which is
even higher than many of the developed with-memory methods in the
literature,

0 eg. 75~ 1.913, of two-step with-memory method using two
accelerators discussed in [2].

@ Finally numerical results are presented which illustrate that the
proposed with-memory iterative methods with have good enough
behaviors for finding roots of nonlinear functions.
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