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Real and Complex
Jacobian conjecture

“Let F=(F1,...,Fn): K" 5 K", where n > 1, K=Ror K=C,
be a polynomial map.

JF(p) : Jacobian matrix of F at p.

Jacobian conjecture: If
det JF(p) #0, Vpe K",

(Jacobian condition)

then F is an automorphism.” (Ott-Heinrich Keller, 1939)
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JF(p) : Jacobian matrix of F at p.
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(Jacobian condition)

then F is an automorphism.” (Ott-Heinrich Keller, 1939)

e n = 1: the conjecture is true for both K =R and K= C.

e n = 2: The conjecture is false for in the real case! (Pinchuk,

1994)
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Construction of the smallest degree (25) Pinchuk’s map
(Counter-example to the Real Jacobian conjecture):

Given (x,y) € R?, denote
t=xy—1, h=t(xt+1), f=(xt+1)>3(t>+y).
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Construction of the smallest degree (25) Pinchuk’s map
(Counter-example to the Real Jacobian conjecture):

Given (x,y) € R?, denote

t=xy—1, h=t(xt+1), f=(xt+1)>2(t>+y).
Consider
p=f+h
q = —t2 — 6th(h + 1) — 170fh — 91h? — 195fh% — 60h® — 75fh* — I3 p,
Then the polynomial mapping P := (p, q) : R?> — R? is the one such that
det (JP(x,y)) > 0,V(x,y) € R? but P is not injective.

v




- In the two papers

e Francisco Braun, Filipe Fernandes, Very degenerate polynomial
submersions and counterexample to the real Jacobian conjecture, Journal
of Pure and Applied Algebra 227 (2023) 107345;

e Filipe Fernandes, A new class of non-injective polynomial local
diffeomorphisms on the plane, J. Math. Anal. Appl. 507 (2022) 125736,
the authors reduce the degree of Pinchuk maps (p, q) to deg(p) =9 and
deg(q) = 15.
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Discrete Contin. Dyn. Syst. 26 (2010), 75-87.

e Franciso Braun, Orefice-Okamoto Bruna, On polynomial submersions
of degree 4 and the real Jacobian conjecture in R?, J. Math. Anal. Appl.
443 (2016) 688-706

the authors proved that the real conjecture is true for mappings (p, q)
where deg(p) < 4.
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- In the papers:

e Francisco Braun and José Ruidival dos Santos Filho, The real Jacobian

conjecture on R? is true when one of the components has degree 3,

Discrete Contin. Dyn. Syst. 26 (2010), 75-87.

e Franciso Braun, Orefice-Okamoto Bruna, On polynomial submersions

of degree 4 and the real Jacobian conjecture in R?, J. Math. Anal. Appl.

443 (2016) 688-706

the authors proved that the real conjecture is true for mappings (p, q)

where deg(p) < 4.

It remains to investigate the real conjecture when the degree of p is 5, 6,

7 or8.
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The conjecture is still open for K = C even with dimension n = 2.

There have been many proofs for the complex conjecture for dimension 2
but one found out mistakes in the proofs. Por example, one of newest
proofs:

W. Bartenwerfer, The Cremona problem in dimension 2, Archiv der
Mathematik. 119 (2022), 53-62

solves the conjecture positively. And the erros were found soon in:
Szymon Brazostowski and Tadeusz Krasiniski, A note on the paper “The
Cremona problem in dimension 2" by Wolfgang Bartenwerfer,
arXiv:2306.03996 (6 June 2023).



An equivalent statement of the Jacobian conjecture
Let F: K" — K", where K = R or C, be a polynomial mapping. If
det JF(p) # 0, Vp € K", then F is proper.

- The map F is proper if and only if its asymptotic set Sg is empty.

Sri={a € K": Hé&} CK", €] — oo, F(é) — a}- J




Structure of the talk

Part 1. Intersection homology approach and applications.

Part 2. Newton polygon approach and the complex conjecture
until degree 104.

Part 3. Asymptotic set approach and some classes satisfying the
Jacobian conjecture.




Intersection homology
approach



Let X be a m-dimensional semi-algebraic variety.
A semi-algebraic stratification of X is the data of a finite semi-algebraic
filtration:

(S): b=X'cXcx'c--cX2cX"tcX=X"

such that for every i, the set S’ = X’ — X'~ is either empty or a smooth
manifold of pure dimension i. A connected component of S’ is called a
stratum of X.

Example:

¢ c {0} c C




A locally topologically trivial stratification is the one such that for every
x € X; \ Xi—1, i > 0, there is an open neighborhood U, of x in X and a
semi-algebraic homeomorphism

h: U, —]0,1['xéLy,

such that h maps the strata of Uy (induced stratification) onto the strata
of ]0, 1['x &L, (product stratification).

Example:




The definition of perversities as originally given by Goresky and
MacPherson: A perversity is a (m + 1)-tuple of integers

p= (vaplip2vp3’ . ~vpm) such that
Qp=p=p=0;
Q put1 € {px, px + 1}, for k > 3.

Pt perversity p

Example:
@ Zero perversity: 0 = (0,0,0,...,0);
@ Maximal perversity (total perversity): £ =(0,0,0,1,2,...,m — 2).

We say that two perversities p and g are complementary if p+ g = t.



In the case of manifolds, global homological invariants like Betti
numbers enjoy remarkable duality properties as stated by Poincaré
(1893) and Lefschetz (1926). For smooth manifolds, the de Rham
theorem (1931) and Morse theory (1934) show that it is possible
to compute such topological invariants using differential forms and
smooth functions. Unfortunately, all these beautiful results fail to
hold for singular varieties! In an attempt to generalize the powerful
theory of characteristic numbers to the singular case, Mark
Goresky and Robert MacPherson noticed about 1973 that the
failure of Poincaré duality is caused by the lack of transversal
intersection of cycles on the singular locus. As a remedy, they
introduced chains with well controlled intersection behaviour on
the singular locus. These “intersection chains’ form a complex that
yields a new (co-) homology theory, called “intersection homology”.
As a key point, the new theory yields an intersection product with
suitable duality properties.



X: m-dimensional semi-algebraic variety with a locally topologically trivial
stratification. A semi-algebraic subset Y C X is (p, i)- allowable if

dim(Y N Xpm_) <i—k+pe, k.
Denote /CP(X): the R-vector subspace of C;(X) of chains ¢ such that |¢]
is (P, i)-allowable and |8¢| is (P, i — 1)-allowable.

The ith intersection homology group with perversity p, denoted by
IH?(X), is the i®" homology group of the chain complex ICf(X).

The intersection homology is independent of the choice of the
stratification.




X: m-dimensional semi-algebraic variety with a locally topologically trivial
stratification. A semi-algebraic subset Y C X is (p, /)- allowable if

dim(Y N Xpm_) <i—k+pe, k.
Denote /CP(X): the R-vector subspace of C;(X) of chains ¢ such that |¢]
is (P, i)-allowable and |8¢| is (P, i — 1)-allowable.

The ith intersection homology group with perversity p, denoted by
IH?(X), is the i®" homology group of the chain complex ICf(X).

The intersection homology is independent of the choice of the
stratification.

The Poincaré duality holds for the intersection homology of a (singular)
variety: For any orientable compact stratified semi-algebraic
m-dimensional variety X, we have:

IH(X) = IH],_(X),

where p and g are complementary perversities.




An intersection homology approach to the Jacobian
conjecture:

Theorem (Anna Valette and Guillaume Valette, 2010).

Let F : C?> — C? be a polynomial mapping satisfying the condition
of the Jacobian conjecture. Then there exist singular varieties V¢
such that F is a diffeomorphism iff the intersection homology
/HE( VE,R) = 0, for any perversity p.

A. Valette and G. Valette, Geometry of polynomial mappings at
infinity via intersection homology, Ann. |. Fourier vol. 64, fascicule
5 (2014), 2147-2163.



Idea of the construction of Valettes’ varieties:

© Consider the polynomial mapping F : C" — C" as a real one
F :R?2" — R?".

@ Take {V;} a finite covering by smooth submanifolds of R?" \ SingF.
(SingF: critical points)
Remark: F induces a diffeomorphism from V; into its image F(V).

© Use Mostowski’s Seperation Lemma: “Let U be an open,
semi-algebraic subset in R¥ and A, B two disjoint closed,
semi-algebraic subsets contained in U. Then there exists a Nash
function 9 : U — R such that % is positive on A and negative on
B.” ( A Nash function 9 : U — R is an analytic one satisfying a
polynomial equation P(x,¥(x)) = 0).
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F :R?2" — R?".

@ Take {V;} a finite covering by smooth submanifolds of R?" \ SingF.
(SingF: critical points)
Remark: F induces a diffeomorphism from V; into its image F(V).

© Use Mostowski’s Seperation Lemma: “Let U be an open,
semi-algebraic subset in R¥ and A, B two disjoint closed,
semi-algebraic subsets contained in U. Then there exists a Nash
function 9 : U — R such that % is positive on A and negative on
B.” ( A Nash function 9 : U — R is an analytic one satisfying a
polynomial equation P(x,¥(x)) = 0).

Thank to Mostowski's seperation technique, they can separate the
images {F(V;)} by adding one dimension for each one to embed them in
a higher dimensional space and glue them together. They get a singular
variety VF such that

SingVEe C (SF @] Ko(F)) X {ORP}.

|Kii Fi = FiSinﬁi F“: critical valuesi.



An example: Let F : R — R be a function defined by F(x) = x°.
Q Sing(F) = {0}.
@ Sing(F) divide R into two subsets:

U={xeR: x>0} , Ur={xeR:x<0}

Q F(Uh)=F(U)={a€eR:a>0}.
@ Put U:=TR\ {0}. There exist Nash functions:

X
: R =—
¢1 U— ) ¢1(X) 1 +X2
P U= R, P(x) = ——
2 - ) 2 = 1+ 2
satisfying the Mostowski's Seperation Lemma.
@ Define

2
X’l—|—x2’1+X2

vp:—(F,wl,zﬁz)(U)—{< a _X):x¢0}cR3.



The Valette variety associated to F : R — R, F(x) = x:

zmin= -0.25

zmax= 110




An intersection homology approach to the Jacobian
conjecture

Theorem (Anna Valette and Guillaume Valette, 2010).

Let F : C? — C? a polynomial mapping satisfying the condition of
the Jacobian conjecture. Then there exist singular varieties V¢
(called Valette varieties) such that F is an automorphism iff its
intersection homology IH?( VE,R) = 0, for any perversity p.

Theorem (—, Anna Valette and Guillaume Valette, 2013)

The above theorem is still true for the general case F : C" — C”,
where n > 2, with the additional condition: "The parts at infinity

of the fibres of F are complete intersections."

Thuy Nguyen, A. Valette and G. Valette, On a singular variety
associated to a polynomial mapping, Journal of Singularities
volume 7 (2013), 190-204.



Some properties of Valette varieties:

© Lipschitz properties: There exists a semi-algebraic bi-Lipschitz
mapping

he - R?™\ Sing(F) — Vi \ ((SF U Ko(F)) x {Oms}.
@ "Good" stratification: there exists a Whitney stratification for

varieties V.
(Whitney stratification = locally topologically trivial stratification)




Applications

Application 1
Theorem (-, 2023)

There exists a Valette variety Vp associated to the Pinchuk map P
such that B B
IHYS(Vp) = IHP (Vip) = 0.

The "real version" of Valettes' result is no longer true!

Thuy Nguyen, A singular variety associated to the smallest degree
Pinchuk map, Matematica Contemporanea, Sociedade Brasileira
de Matematica, 2023.




Idea of the proof: Use the behaviours of the asymptotic variety of
the Pinchuk’'s map described by L. A. Campbell, (1996-2001).
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Applications

Application 2:

Theorem (- , Maria Aparecida Soares Ruas, 2018)

Let G = (Gy,...,G,_1) : C" — C"1, where n > 2, be a generic
polynomial mapping such that Ko(G) = 0 (local submersion) and the
parts at infinity of the fibres of G are complete intersections. Then there
exist singular varieties V¢ associated to G such that if /H(Vs,R) is
trivial then the bifurcation set B(G) is empty (here T is the total
perversity).

Thuy Nguyen and Ruas, M.A.S., On singular varieties associated to a
polynomial mapping from C" to C"~%, Asian Journal of Mathematics,
v.22, p.1157-1172, 2018.



Idea of the proof:

e G:C"—C" !, Ky(G)=0, G:R>"— R?"2

cpiC R p(z) = N0, alap

(¢ = r: 2n-dimensional real sphere).

e M¢ = Sing(G, ).

(G, ¢): mixed function

(M. Oka, A Non-degenerate mixed function, Kodai Math, 2010)

p=r

» 20 € Mg

Morse singularity

G: generic
= dimpM¢g =2n - 2.




Broughton’s Example:

G:C?>=C, G(z,w) = z + Z%w,
Ko(G) =0, B(G)=A{0}




Theorem (Ha Huy Vui and Nguyén Tt Thing, 2011).

Let G : C" — C"1, where n > 2, be a local submersion polynomial
mapping. If the parts at infinity of the fibres of G are complete
intersections, then the bifurcation set B(G) of G is empty if and only if
the Euler characteristic of G™1(t) is a constant for any t € C"~1.

V. H. Ha, T. T. Nguyen On the topology of polynomial mappings from
C" to C™1, International Journal of Mathematics, Vol. 22, No. 3 (2011)
435-448.
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H. Ha, Nombres de Lojasiewicz et singularités a I'infini des polynémes de
deux variables complexes, C. R. Acad. Sci. Paris Ser. | 311 (1990)
429-432.

V. H. Ha and L.D. Trang, Sur la topologie des polynomes complexes,
Acta Math. Vietnamica 9 (1984) 21-32.
M. Suzuki, Propriétés topologiques des polynomes de deux variables

complexes, et automorphismes algébriques de I'espace C?, J. Math. Soc.
Japan 26 (1974) 241-257.



Comparison with Ha Huy Vui's and Nguy&n Tt Thing's Result

V.H.Ha and T.T. Nguyen Resuls Our Result

@ G:C"—>Cr! @ G:C"—>Cr!

Q@ Ko(G)=10 Q Ko(G)=10

Q dimc{Gi(2)}i=1, =1 o RankC(DGi)izL...,nq >n =3,
G;: the leading form of G; Gi: the leading form of G;

Q x(G7(t)) = const. & B(G) =0. @ IHi(Vs,R)=0= B(G)=0.




A consequence: Relation between the Euler characteristic and
Intersection Homology

Corollary (-, Maria Aparecida Soares Ruas, 2018)

Let G = (Gy,..., Gy 1) : C" — C"™1, where n > 2, be a generic
polynomial mapping such that Ky(G) = 0 and the parts at infinity
of the fibres of G are complete intersections. If there exist

t1, t» € C"1 such that x(G~1(t1)) # x(G~(t1)), then there is
singular variety Vg associated to G such that IH(Vg, R) # 0.




Newton polygon approach:

The complex conjecture until
degree 104



Newton polygon

Definition

Let f : C*> — C be a polynomial of two variables x and y, i.e., f
can be written as a finite sum:

f= Z a;jxiyj.
i
The support of f, denoted by Suppf, is defined by:

Suppf = {(/,J) : a;j # 0}.

The Newton polygon of f, denoted by N(f), is the convex hull of
the origin and Suppf:

N(f) = Conv ({(0,0)} U{(i,J) : aj # 0}).




Example 1: f(x,y) = x + x>+ xy +y + y°.

J




Example 1: f(x,y) = x + x>+ xy +y + y°.
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Example 1: f(x,y) = x + x%> + xy + y + y°.

J




Example 2: f(x,y) = x + x%y + xy + xy> + y.

J




Example 2: f(x,y) = x + x%y +xy +xy? + y.

J

N(f




The Newton polygon approach was studied by Abhyankar in the paper
S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata
Institute of Fundamental Research, 1977

to study the 2-dimensional Jacobian conjecture in the complex case.



The Newton polygon approach was studied by Abhyankar in the paper
S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata
Institute of Fundamental Research, 1977

to study the 2-dimensional Jacobian conjecture in the complex case.

Principal results by Newton polygon approach

Let F = (f,g) : C2 — C? be a polynomial mapping.

© (Abhyankar, 1977). If deg (f) divide deg(g) or deg (g) divide
deg () then the conjecture is true.

@ (Appelgate, Onishi, Nagata, 1985). Let
d := gcd(deg (f),deg(g)), the greatest common divisor of degrees
of f and g. Then If d < 8 or d is a prime number then the
conjecture is true.

© (Nagata, 1985). If deg (f) or deg(g) is a product of at most two
prime numbers, then the conjecture is true.




With a highly non-trivial proof, Moh proved:

Theorem (Moh, 1983)

Let F = (f,g) : C2 — C? be a polynomial mapping. The 2-dimensional
complex Jacobian conjecture is true for deg (F) < 100.
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With a highly non-trivial proof, Moh proved:

Theorem (Moh, 1983)

Let F = (f,g) : C2 — C? be a polynomial mapping. The 2-dimensional
complex Jacobian conjecture is true for deg (F) < 100.

Question: What happens if deg (F) > 1017

The 2-dimensional complex Jacobian conjecture is true for deg (F) < 104.

Idea of Proof: Using the principal results obtained by Newton polygon
approach and the following result of Zotadek obtained by the so-called
Newton-Puiseux chart

Theorem (Zotadek, 2008)

The Jacobian conjecture satisfies for maps with
gecd(deg (f),deg(g)) < 16 and for maps with gcd(deg (f), deg(g))
equals to 2 times a prime.




For deg (F) = 105, we have:

Proposition

If the conjecture satisfies for the cases where (deg (f), deg(g)) is
(42,105), (63,105), (70,105), (84,105)

then the conjecture satisfies for polynomial maps of degree 105.

Thuy Nguyen, Some classes satisfying the 2-dimensional Jacobian
conjecture, 2023. arXiv:1902.05923.



For deg (F) = 105, we have:

Proposition

If the conjecture satisfies for the cases where (deg (1), deg(g)) is
(42,105), (63,105), (70,105), (84,105)

then the conjecture satisfies for polynomial maps of degree 105.

Thuy Nguyen, Some classes satisfying the 2-dimensional Jacobian
conjecture, 2023. arXiv:1902.05923.

A work increasing the degree of Moh's result:

Jorge A. Guccione, Juan J. Guccione, Rodrigo Horruitiner and Christian
Valqui, Increasing the degree of a possible counterexample to the
Jacobian conjecture from 100 to 108, arXiv:2204.14178, April 2022.
(the authors combinie previous complicated techniques, they list all the
pairs (f, g) with degree less than 125 for any hypothetical
counterexample to the plane Jacobian conjecture and discard them all)



Asymptotic approach:
Some classes satistying

the conjecture



An equivalent statement of the Jacobian conjecture

Let F : K" — K", where K =R or C, be a polynomial mapping. If
det JF(p) # 0, Vp € K", then F is proper.

- The map F is proper if and only if its asymptotic set Sg is empty.

Sk = {3 e K": EI{Ek} C K7, |Ek| — X, F(Ek) - a}'




An equivalent statement of the Jacobian conjecture

Let F : K" — K", where K =R or C, be a polynomial mapping. If
det JF(p) # 0, Vp € K", then F is proper.

- The map F is proper if and only if its asymptotic set Sg is empty.

Sk = {3 e K": EI{Ek} C K7, |Ek| — X, F(Ek) - a}'

Motivation: Study a subset (sufficient large) of non-proper
mappings and investigate the Condition of the Jacobian conjecture
for this subset.

This work is inspired by Pinchuk’s counter-examples.



Pinchuk’s map (Counter-example to the real Jacobian conjecture):
Given (x,y) € R?, let:

t=xy—1, h=t(xt+1), f=(xt+1)(t>+y).

Considere

p=f+h

g = —t2 — 6th(h+ 1) — 170fh — 91h* — 195fh% — 69h% — 75/h% — L2 h.
Then (p, q) satisfies the Jacobian condition but it is not injective.
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@ The sequence {z} = {(k,1/k)} C R? tends to infinity but
t(zx) = h(zx) = 0 and f(zx) = 1/k. Then the Pinchuk maps (p, q),
being polynomial maps of new variables t, h and f, satisfies that
(p(2z«), q(z«)) does not tend to infinity, in other words (p, q) is
non-proper. Then (p, q) is not an automorphism.
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t=xy—1, h=t(xt+1), f=(xt+1)(t>+y).

Considere

p=f+h

g = —t2 — 6th(h+ 1) — 170fh — 91h* — 195fh% — 69h% — 75/h% — L2 h.
Then (p, q) satisfies the Jacobian condition but it is not injective.

Observation:

@ By changing variables t := t(x,y), h:= h(x,y) and f := f(x,y),
the Pinchuk map is a polynomial map of variables ¢, h and f.

@ The sequence {z} = {(k,1/k)} C R? tends to infinity but
t(zx) = h(zx) = 0 and f(zx) = 1/k. Then the Pinchuk maps (p, q),
being polynomial maps of new variables t, h and f, satisfies that
(p(2z«), q(z«)) does not tend to infinity, in other words (p, q) is
non-proper. Then (p, q) is not an automorphism.

We define such variables t, h, f so-called non-proper variables.
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@ Define a so-called “non-proper variables”.
Remark: Every mapping written as a polynomial mapping of
non-proper variables is non-proper and vice-versa.



Consider a polynomial mapping F : K?> — K?, where K =R or C.

@ Define a so-called “non-proper variables”.
Remark: Every mapping written as a polynomial mapping of
non-proper variables is non-proper and vice-versa.

@ C(lassify the non-proper mappings into two types:

e the first one does not satisfy the condition of the Jacobian
conjecture (then we obtain a class of polynomial mapping
satisfying the Jacobian conjecture);

e otherwise a non-proper mapping satisfying the Jacobian
condition (if there exists) is a one of the second type.
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Counter-example to JC !

Pinchuk maps (counter-examples to the real Jacobian conjecture)
are non-proper maps satisfying the condition of the Jacobian
conjecture.




Non-proper variables:

Definition

Let u: K?> — K be a polynomial function. We say that the function u is
a non-proper variable if there is a sequence {(xk, yk)}xen C K2 such that
limg— o0 ||(xk, Yk )|| = 00 and limg_s o0 u(xk, k) = ¢ € K.

Classify non-proper variables:

Definition

Let ug, uy, ..., u, : K> = K be non-proper variables. We say that they
are dependent non-proper variables if there exists z € K? such that the

two vectors 5 9 5
Up uy up
( Ox (2), Bx (2),-s Ox (Z)> ’
Oug ouy ou,
(6y(z)’ W(Z): ceey ay(z)>
are linearly dependent in K"*1. Otherwise, the non-proper variables
ug, U1, ..., U, are independent non-proper variables.




Theorem: If ug, u1, ..., u, are dependent then any polynomial mapping
F(uo, uz, ..., u,) does not satisfy the condition of the Jacobian
conjecture.

Theorem: Consider the set of non-proper variables from K2 to K:
u=y,u=x—bx"y’...,u,=x—bx""y", (bEK,r,s>0)

Then the variables ug, 1, .. ., u, are non-proper and
@ If r =1, then the non-proper variables ug, uy, ..., u, are dependent.

@ If r > 1, then for a fixed natural number n > 2, the non-proper
variables ug, vy, ..., u, are independent.




Theorem: If ug, u1, ..., u, are dependent then any polynomial mapping
F(uo, uz, ..., u,) does not satisfy the condition of the Jacobian
conjecture.

Theorem: Consider the set of non-proper variables from K2 to K:
u=y,u=x—bx"y’...,u,=x—bx""y", (bEK,r,s>0)

Then the variables ug, uy, ..., u, are non-proper and
@ If r =1, then the non-proper variables ug, uy, ..., u, are dependent.

@ If r > 1, then for a fixed natural number n > 2, the non-proper
variables ug, vy, ..., u, are independent.

A remark: Denote by C := |J2, C,.

r=

e C; is a class where Jacobian conjectrue is true;

o If there exists a polynomial mapping belonging to some class C,, r > 2
and satisfy the Jacobian condition, then it is a counter-example to the
conjecture.




A class of polynomial mapping satisfying the Jacobian conjecture:

Consider the set of non-proper variables from K? to K:

u=y,uy=x—bx"y*,...,uy=x—bx""y™, (beK,r,s>0)
Then the variables ug, vy, ..., u, are non-proper and

@ If r =1, then the non-proper variables ug, uy, ..., u, are dependent.

@ If r > 1, then for a fixed natural number n > 2, the non-proper
variables ug, uq, ..., u, are independent.

Motivation for studying this class: Newton polygon contains two
points (1, 0) and (0, 1) (for the complex case, a mapping

(f,g) : C? — C? satisfying the Jacobian condition when the Newton
polygons N(f) and N(g) contain 2 points (1, 0) and (0, 1).



A class of polynomial mapping satisfying the Jacobian conjecture:

Consider the set of non-proper variables from K? to K:

U=y uy=x—bx"y*,...,u,=x—bx"y"”, (beK,rs>0)
Then the variables ug, 1, . . ., u, are non-proper and
@ If r =1, then the non-proper variables ug, uy, ..., u, are dependent.

@ If r > 1, then for a fixed natural number n > 2, the non-proper
variables ug, vy, ..., u, are independent.
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Thuy Nguyen, Some classes satisfying the 2-dimensional Jacobian
conjecture, 2023. arXiv:1902.05923.
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