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Real and Complex

Jacobian conjecture

“Let F = (F1; : : : ;Fn) : Kn ! Kn, where n � 1, K = R or K = C,

be a polynomial map.

JF (p) : Jacobian matrix of F at p.

Jacobian conjecture: If

det JF (p) 6= 0; 8p 2 Kn;

(Jacobian condition)

then F is an automorphism.” (Ott-Heinrich Keller, 1939)

� n = 1: the conjecture is true for both K = R and K = C.

� n = 2: The conjecture is false for in the real case! (Pinchuk,

1994)
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Construction of the smallest degree (25) Pinchuk’s map

(Counter-example to the Real Jacobian conjecture):

Given (x ; y) 2 R2, denote

t = xy � 1; h = t(xt + 1); f = (xt + 1)2(t2 + y):

Consider

p = f + h

q = �t2 � 6th(h + 1)� 170fh � 91h2 � 195fh2 � 69h3 � 75fh3 � 75
4 h4:

Then the polynomial mapping P := (p; q) : R2 ! R2 is the one such that

det (JP(x ; y)) > 0; 8(x ; y) 2 R2 but P is not injective.



Construction of the smallest degree (25) Pinchuk’s map

(Counter-example to the Real Jacobian conjecture):

Given (x ; y) 2 R2, denote

t = xy � 1; h = t(xt + 1); f = (xt + 1)2(t2 + y):

Consider

p = f + h

q = �t2 � 6th(h + 1)� 170fh � 91h2 � 195fh2 � 69h3 � 75fh3 � 75
4 h4:

Then the polynomial mapping P := (p; q) : R2 ! R2 is the one such that

det (JP(x ; y)) > 0; 8(x ; y) 2 R2 but P is not injective.



Construction of the smallest degree (25) Pinchuk’s map

(Counter-example to the Real Jacobian conjecture):

Given (x ; y) 2 R2, denote

t = xy � 1; h = t(xt + 1); f = (xt + 1)2(t2 + y):

Consider

p = f + h

q = �t2 � 6th(h + 1)� 170fh � 91h2 � 195fh2 � 69h3 � 75fh3 � 75
4 h4:

Then the polynomial mapping P := (p; q) : R2 ! R2 is the one such that

det (JP(x ; y)) > 0; 8(x ; y) 2 R2 but P is not injective.



- In the two papers

� Francisco Braun, Filipe Fernandes, Very degenerate polynomial

submersions and counterexample to the real Jacobian conjecture, Journal

of Pure and Applied Algebra 227 (2023) 107345;

� Filipe Fernandes, A new class of non-injective polynomial local

diffeomorphisms on the plane, J. Math. Anal. Appl. 507 (2022) 125736,

the authors reduce the degree of Pinchuk maps (p; q) to deg(p) = 9 and

deg(q) = 15.

- In the papers:

� Francisco Braun and José Ruidival dos Santos Filho, The real Jacobian

conjecture on R2 is true when one of the components has degree 3,

Discrete Contin. Dyn. Syst. 26 (2010), 75–87.

� Franciso Braun, Orefice-Okamoto Bruna, On polynomial submersions

of degree 4 and the real Jacobian conjecture in R2, J. Math. Anal. Appl.

443 (2016) 688-706

the authors proved that the real conjecture is true for mappings (p; q)

where deg(p) � 4.

It remains to investigate the real conjecture when the degree of p is 5, 6,

7 or 8.
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The conjecture is still open for K = C even with dimension n = 2.

There have been many proofs for the complex conjecture for dimension 2

but one found out mistakes in the proofs. Por example, one of newest

proofs:

W. Bartenwerfer, The Cremona problem in dimension 2, Archiv der

Mathematik. 119 (2022), 53-62

solves the conjecture positively. And the erros were found soon in:

Szymon Brazostowski and Tadeusz Krasıński, A note on the paper “The

Cremona problem in dimension 2” by Wolfgang Bartenwerfer,

arXiv:2306.03996 (6 June 2023).



An equivalent statement of the Jacobian conjecture

Let F : Kn ! Kn, where K = R or C, be a polynomial mapping. If

det JF (p) 6= 0; 8p 2 Kn; then F is proper.

- The map F is proper if and only if its asymptotic set SF is empty.

SF := fa 2 Kn : 9f�kg � K
n; j�k j ! 1; F (�k) ! ag:



Structure of the talk

Part 1. Intersection homology approach and applications.

Part 2. Newton polygon approach and the complex conjecture

until degree 104.

Part 3. Asymptotic set approach and some classes satisfying the

Jacobian conjecture.



Intersection homology
approach



Let X be a m-dimensional semi-algebraic variety.

A semi-algebraic stratification of X is the data of a finite semi-algebraic

filtration:

(S) : ; = X�1 � X 0 � X 1 � � � � � X n�2 � X n�1 � X = Xm

such that for every i , the set S i = X i � X i�1 is either empty or a smooth

manifold of pure dimension i . A connected component of S i is called a

stratum of X .

Example:



A locally topologically trivial stratification is the one such that for every

x 2 Xi n Xi�1, i � 0, there is an open neighborhood Ux of x in X and a

semi-algebraic homeomorphism

h : Ux ! ]0; 1[i�c̊Lx ;

such that h maps the strata of Ux (induced stratification) onto the strata

of ]0; 1[i�c̊Lx (product stratification).

Example:



The definition of perversities as originally given by Goresky and

MacPherson: A perversity is a (m + 1)-tuple of integers

p̄ = (p0; p1; p2; p3; : : : ; pm) such that

1 p0 = p1 = p2 = 0;

2 pk+1 2 fpk ; pk + 1g, for k � 3.

� � � � � � �

perversity p̄

0

pk+1
�

Example:

1 Zero perversity: 0 = (0; 0; 0; : : : ; 0);

2 Maximal perversity (total perversity): t = (0; 0; 0; 1; 2; : : : ;m � 2).

We say that two perversities p and q are complementary if p + q = t.



In the case of manifolds, global homological invariants like Betti

numbers enjoy remarkable duality properties as stated by Poincaré

(1893) and Lefschetz (1926). For smooth manifolds, the de Rham

theorem (1931) and Morse theory (1934) show that it is possible

to compute such topological invariants using differential forms and

smooth functions. Unfortunately, all these beautiful results fail to

hold for singular varieties! In an attempt to generalize the powerful

theory of characteristic numbers to the singular case, Mark

Goresky and Robert MacPherson noticed about 1973 that the

failure of Poincaré duality is caused by the lack of transversal

intersection of cycles on the singular locus. As a remedy, they

introduced chains with well controlled intersection behaviour on

the singular locus. These “intersection chains” form a complex that

yields a new (co-) homology theory, called “intersection homology” .

As a key point, the new theory yields an intersection product with

suitable duality properties.



X : m-dimensional semi-algebraic variety with a locally topologically trivial

stratification. A semi-algebraic subset Y � X is (p̄; i)- allowable if

dim(Y \ Xm�k) � i � k + pk ; 8k :

Denote IC p
i (X ): the R-vector subspace of Ci (X ) of chains � such that j�j

is (p; i)-allowable and j@�j is (p; i � 1)-allowable.

The i th intersection homology group with perversity p, denoted by

IHp
i (X ), is the i th homology group of the chain complex IC p

� (X ):

The intersection homology is independent of the choice of the

stratification.

The Poincaré duality holds for the intersection homology of a (singular)

variety: For any orientable compact stratified semi-algebraic

m-dimensional variety X , we have:

IHp
k (X ) ' IHq

m�k(X );

where p and q are complementary perversities.
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An intersection homology approach to the Jacobian

conjecture:

Theorem (Anna Valette and Guillaume Valette, 2010).

Let F : C2 ! C2 be a polynomial mapping satisfying the condition

of the Jacobian conjecture. Then there exist singular varieties VF

such that F is a diffeomorphism iff the intersection homology

IH
p
2 (VF ;R) = 0, for any perversity p.

A. Valette and G. Valette, Geometry of polynomial mappings at

infinity via intersection homology, Ann. I. Fourier vol. 64, fascicule

5 (2014), 2147-2163.



Idea of the construction of Valettes’ varieties:

1 Consider the polynomial mapping F : Cn ! Cn as a real one

F : R2n ! R2n.

2 Take fVig a finite covering by smooth submanifolds of R2n n SingF .

(SingF : critical points)

Remark: F induces a diffeomorphism from Vi into its image F (Vi ).

3 Use Mostowski’s Seperation Lemma: “Let U be an open,

semi-algebraic subset in Rk and A;B two disjoint closed,

semi-algebraic subsets contained in U. Then there exists a Nash

function  : U ! R such that  is positive on A and negative on

B.” ( A Nash function  : U ! R is an analytic one satisfying a

polynomial equation P(x ;  (x)) = 0).

Thank to Mostowski’s seperation technique, they can separate the

images fF (Vi )g by adding one dimension for each one to embed them in

a higher dimensional space and glue them together. They get a singular

variety VF such that

SingVF � (SF [ K0(F ))� f0Rpg:

(K0(F ) = F (Sing(F )): critical values).
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An example: Let F : R! R be a function defined by F (x) = x2.

1 Sing(F ) = f0g.

2 Sing(F ) divide R into two subsets:

U1 = fx 2 R : x > 0g ; U2 = fx 2 R : x < 0g

3 F (U1) = F (U2) = f� 2 R : � > 0g.

4 Put U := R n f0g. There exist Nash functions:

 1 : U ! R;  1(x) :=
x

1 + x2

 2 : U ! R;  2(x) :=
�x

1 + x2
:

satisfying the Mostowski’s Seperation Lemma.

5 Define

VF := (F ;  1;  2)(U) =

��
x2;

x

1 + x2
;
�x

1 + x2

�
: x 6= 0

�
� R3:



The Valette variety associated to F : R! R; F (x) = x2:



An intersection homology approach to the Jacobian

conjecture

Theorem (Anna Valette and Guillaume Valette, 2010).

Let F : C2 ! C2 a polynomial mapping satisfying the condition of

the Jacobian conjecture. Then there exist singular varieties VF

(called Valette varieties) such that F is an automorphism iff its

intersection homology IH
p
2 (VF ;R) = 0, for any perversity p.

Theorem (�, Anna Valette and Guillaume Valette, 2013)

The above theorem is still true for the general case F : Cn ! Cn,

where n � 2, with the additional condition: "The parts at infinity

of the fibres of F are complete intersections."

Thuy Nguyen, A. Valette and G. Valette, On a singular variety

associated to a polynomial mapping, Journal of Singularities

volume 7 (2013), 190-204.



Some properties of Valette varieties:

1 Lipschitz properties: There exists a semi-algebraic bi-Lipschitz

mapping

hF : R2n n Sing(F ) ! VF n ((SF [ K0(F ))� f0Rpg:

2 “Good” stratification: there exists a Whitney stratification for

varieties VF .

(Whitney stratification ) locally topologically trivial stratification)



Applications

Application 1

Theorem (-, 2023)

There exists a Valette variety VP associated to the Pinchuk map P

such that

IH
0̄;c
1 (VP) = IH

0̄;cl
1 (VP) = 0:

Remark

The "real version" of Valettes’ result is no longer true!

Thuy Nguyen, A singular variety associated to the smallest degree

Pinchuk map, Matemática Contemporânea, Sociedade Brasileira

de Matemática, 2023.



Idea of the proof: Use the behaviours of the asymptotic variety of

the Pinchuk’s map described by L. A. Campbell, (1996-2001).



Applications

Application 2:

Theorem (- , Maria Aparecida Soares Ruas, 2018)

Let G = (G1; : : : ;Gn�1) : Cn ! Cn�1, where n � 2, be a generic

polynomial mapping such that K0(G ) = ; (local submersion) and the

parts at infinity of the fibres of G are complete intersections. Then there

exist singular varieties VG associated to G such that if IH t
2(VG ;R) is

trivial then the bifurcation set B(G ) is empty (here t is the total

perversity).

Thuy Nguyen and Ruas, M.A.S., On singular varieties associated to a

polynomial mapping from Cn to Cn�1, Asian Journal of Mathematics,

v.22, p.1157-1172, 2018.



Idea of the proof:

� G : Cn ! Cn�1, K0(G ) = ;, G : R2n ! R2n�2.

� ' : Cn ! R, '(z) =
Pn

i=1 ai jzi j
2

(' = r : 2n-dimensional real sphere).

� MG = Sing(G ; '):

(G ; '): mixed function

(M. Oka, A Non-degenerate mixed function, Kodai Math, 2010)

�z0 2MG

' = r
G = c

G : generic
Morse singularity

) dimRMG = 2n � 2.



Broughton’s Example:

G : C2 ! C; G (z ;w) = z + z2w ;

K0(G ) = ;; B(G ) = f0g
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Theorem (Hà Huy Vui and Nguyễn Tất Thắng, 2011).

Let G : Cn ! Cn�1, where n � 2, be a local submersion polynomial

mapping. If the parts at infinity of the fibres of G are complete

intersections, then the bifurcation set B(G ) of G is empty if and only if

the Euler characteristic of G�1(t) is a constant for any t 2 Cn�1.

V. H. Ha, T. T. Nguyen On the topology of polynomial mappings from

Cn to Cn�1, International Journal of Mathematics, Vol. 22, No. 3 (2011)

435-448.

H. Ha, Nombres de  Lojasiewicz et singularités à l’infini des polynômes de

deux variables complexes, C. R. Acad. Sci. Paris Ser. I 311 (1990)

429-432.

V. H. Ha and L.D. Tráng, Sur la topologie des polynomes complexes,

Acta Math. Vietnamica 9 (1984) 21-32.

M. Suzuki, Propriétés topologiques des polynomes de deux variables

complexes, et automorphismes algébriques de l’espace C2, J. Math. Soc.

Japan 26 (1974) 241-257.
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Comparison with Hà Huy Vui’s and Nguyễn Tất Thắng’s Result

V.H.Ha and T.T. Nguyen Resuls

1 G : Cn ! Cn�1

2 K0(G ) = ;

3 dimCfĜi (z)gi=1;:::;n = 1

Ĝi : the leading form of Gi

4 �(G�1(t)) = const:, B(G ) = ;.

Our Result

1 G : Cn ! Cn�1

2 K0(G ) = ;

3 RankC(DĜi )i=1;:::;n�1 > n � 3,

Ĝi : the leading form of Gi

4 IH t̄
2(VG ;R) = 0) B(G ) = ;:



A consequence: Relation between the Euler characteristic and

Intersection Homology

Corollary (-, Maria Aparecida Soares Ruas, 2018)

Let G = (G1; : : : ;Gn�1) : Cn ! Cn�1, where n � 2, be a generic

polynomial mapping such that K0(G ) = ; and the parts at infinity

of the fibres of G are complete intersections. If there exist

t1; t2 2 C
n�1 such that �(G�1(t1)) 6= �(G�1(t1)), then there is

singular variety VG associated to G such that IHt
2(VG ;R) 6= 0.



Newton polygon approach:
The complex conjecture until

degree 104



Newton polygon

Definition

Let f : C2 ! C be a polynomial of two variables x and y , i.e., f

can be written as a finite sum:

f =
X
i ;j

aijx
iy j :

The support of f , denoted by Suppf , is defined by:

Suppf = f(i ; j) : aij 6= 0g:

The Newton polygon of f , denoted by N(f ), is the convex hull of

the origin and Suppf :

N(f ) = Conv (f(0; 0)g [ f(i ; j) : aij 6= 0g) :



Example 1: f (x ; y) = x + x2 + xy + y + y2:

0

j

i� �

��

�

�

N(f )
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Example 2: f (x ; y) = x + x2y + xy + xy2 + y :

0

j

i� �
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�

N(f )



Example 2: f (x ; y) = x + x2y + xy + xy2 + y :

0

j

i� �

� � �

� N(f )



The Newton polygon approach was studied by Abhyankar in the paper

S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata

Institute of Fundamental Research, 1977

to study the 2-dimensional Jacobian conjecture in the complex case.

Principal results by Newton polygon approach

Let F = (f ; g) : C2 ! C2 be a polynomial mapping.

1 (Abhyankar, 1977). If deg (f ) divide deg (g) or deg (g) divide

deg (f ) then the conjecture is true.

2 (Appelgate, Onishi, Nagata, 1985). Let

d := gcd(deg (f );deg (g)), the greatest common divisor of degrees

of f and g . Then If d � 8 or d is a prime number then the

conjecture is true.

3 (Nagata, 1985). If deg (f ) or deg (g) is a product of at most two

prime numbers, then the conjecture is true.
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With a highly non-trivial proof, Moh proved:

Theorem (Moh, 1983)

Let F = (f ; g) : C2 ! C2 be a polynomial mapping. The 2-dimensional

complex Jacobian conjecture is true for deg (F ) � 100.

Question:What happens if deg (F ) � 101?

Theorem

The 2-dimensional complex Jacobian conjecture is true for deg (F ) � 104.

Idea of Proof: Using the principal results obtained by Newton polygon

approach and the following result of Żo la̧dek obtained by the so-called

Newton-Puiseux chart

Theorem (Żo la̧dek, 2008)

The Jacobian conjecture satisfies for maps with

gcd(deg (f );deg (g)) � 16 and for maps with gcd(deg (f );deg (g))

equals to 2 times a prime.
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For deg (F ) = 105, we have:

Proposition

If the conjecture satisfies for the cases where (deg (f );deg (g)) is

(42; 105); (63; 105); (70; 105); (84; 105)

then the conjecture satisfies for polynomial maps of degree 105.

Thuy Nguyen, Some classes satisfying the 2-dimensional Jacobian

conjecture, 2023. arXiv:1902.05923.

A work increasing the degree of Moh’s result:

Jorge A. Guccione, Juan J. Guccione, Rodrigo Horruitiner and Christian

Valqui, Increasing the degree of a possible counterexample to the

Jacobian conjecture from 100 to 108, arXiv:2204.14178, April 2022.

(the authors combinie previous complicated techniques, they list all the

pairs (f ; g) with degree less than 125 for any hypothetical

counterexample to the plane Jacobian conjecture and discard them all)
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Asymptotic approach:
Some classes satisfying

the conjecture



An equivalent statement of the Jacobian conjecture

Let F : Kn ! Kn, where K = R or C, be a polynomial mapping. If

det JF (p) 6= 0; 8p 2 Kn; then F is proper.

- The map F is proper if and only if its asymptotic set SF is empty.

SF := fa 2 Kn : 9f�kg � K
n; j�k j ! 1; F (�k) ! ag:

Motivation: Study a subset (sufficient large) of non-proper

mappings and investigate the Condition of the Jacobian conjecture

for this subset.

This work is inspired by Pinchuk’s counter-examples.
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Pinchuk’s map (Counter-example to the real Jacobian conjecture):

Given (x ; y) 2 R2, let:

t = xy � 1; h = t(xt + 1); f = (xt + 1)2(t2 + y):

Considere

p = f + h

q = �t2 � 6th(h + 1)� 170fh � 91h2 � 195fh2 � 69h3 � 75fh3 � 75
4 h4:

Then (p; q) satisfies the Jacobian condition but it is not injective.

Observation:

1 By changing variables t := t(x ; y), h := h(x ; y) and f := f (x ; y),

the Pinchuk map is a polynomial map of variables t; h and f .

2 The sequence fzkg = f(k; 1=k)g � R2 tends to infinity but

t(zk) = h(zk) = 0 and f (zk) = 1=k . Then the Pinchuk maps (p; q),

being polynomial maps of new variables t; h and f , satisfies that

(p(zk); q(zk)) does not tend to infinity, in other words (p; q) is

non-proper. Then (p; q) is not an automorphism.

We define such variables t, h, f so-called non-proper variables.
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Consider a polynomial mapping F : K2 ! K2, where K = R or C.

1 Define a so-called “non-proper variables”.

Remark: Every mapping written as a polynomial mapping of

non-proper variables is non-proper and vice-versa.

2 Classify the non-proper mappings into two types:

� the first one does not satisfy the condition of the Jacobian

conjecture (then we obtain a class of polynomial mapping

satisfying the Jacobian conjecture);

� otherwise a non-proper mapping satisfying the Jacobian

condition (if there exists) is a one of the second type.
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are non-proper maps satisfying the condition of the Jacobian

conjecture.
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Non-proper variables:

Definition

Let u : K2 ! K be a polynomial function. We say that the function u is

a non-proper variable if there is a sequence f(xk ; yk)gk2N � K
2 such that

limk!1 k(xk ; yk)k = 1 and limk!1 u(xk ; yk) = c 2 K.

Classify non-proper variables:

Definition

Let u0; u1; : : : ; un : K2 ! K be non-proper variables. We say that they

are dependent non-proper variables if there exists z 2 K2 such that the

two vectors �
@u0

@x
(z);

@u1

@x
(z); : : : ;

@un

@x
(z)

�
;

�
@u0

@y
(z);

@u1

@y
(z); : : : ;

@un

@y
(z)

�

are linearly dependent in Kn+1. Otherwise, the non-proper variables

u0; u1; : : : ; un are independent non-proper variables.



Theorem: If u0; u1; : : : ; un are dependent then any polynomial mapping

F (u0; u1; : : : ; un) does not satisfy the condition of the Jacobian

conjecture.

Theorem: Consider the set of non-proper variables from K2 to K:

u0 = y ; u1 = x � bx ry s ; : : : ; un = x � bxnryns ; (b 2 K; r ; s > 0)

Then the variables u0; u1; : : : ; un are non-proper and

1 If r = 1, then the non-proper variables u0; u1; : : : ; un are dependent.

2 If r > 1, then for a fixed natural number n � 2, the non-proper

variables u0; u1; : : : ; un are independent.

A remark: Denote by C :=
S
1

r=1 Cr :

� C1 is a class where Jacobian conjectrue is true;

� If there exists a polynomial mapping belonging to some class Cr , r � 2

and satisfy the Jacobian condition, then it is a counter-example to the

conjecture.
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A class of polynomial mapping satisfying the Jacobian conjecture:

Theorem

Consider the set of non-proper variables from K2 to K:

u0 = y ; u1 = x � bx ry s ; : : : ; un = x � bxnryns ; (b 2 K; r ; s > 0)

Then the variables u0; u1; : : : ; un are non-proper and

1 If r = 1, then the non-proper variables u0; u1; : : : ; un are dependent.

2 If r > 1, then for a fixed natural number n � 2, the non-proper

variables u0; u1; : : : ; un are independent.

Motivation for studying this class: Newton polygon contains two

points (1, 0) and (0, 1) (for the complex case, a mapping

(f ; g) : C2 ! C2 satisfying the Jacobian condition when the Newton

polygons N(f ) and N(g) contain 2 points (1, 0) and (0, 1).
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Thuy Nguyen, Some classes satisfying the 2-dimensional Jacobian

conjecture, 2023. arXiv:1902.05923.



Thank you very much!

Muito obrigada!!

Cám ơn các bạn
rất nhiều!!!

Tusen Takk!!!!



Thank you very much!

Muito obrigada!!

Cám ơn các bạn
rất nhiều!!!

Tusen Takk!!!!



Thank you very much!

Muito obrigada!!

Cám ơn các bạn
rất nhiều!!!

Tusen Takk!!!!



Thank you very much!

Muito obrigada!!

Cám ơn các bạn
rất nhiều!!!

Tusen Takk!!!!


