CENTER OF MASS MOTION AND THE MOTT TRANSITION IN LIGHT NUCLEI

Arij Abdelrahman

&

Mahmoud Staty
Supervisor: Prof. Henry Jaqaman

Department of Physics
Birzeit University
Palestine

Introduction

One of the most important topics in nuclear physics is to study the composition, stability, and the dynamics of finite nuclear matter (nuclei) under different conditions.

At very low densities nuclear matter is often viewed as a vapour of widely separated nucleons.

Introduction

- Studies indicate that light nuclei (clusters) are formed in the vapor at very low vapour densities to minimize the energy [1-3].
- At a certain density of nucleons in the surrounding vapour (**Mott density**) the cluster dissolve and become part of the surrounding vapour due to **Pauli blocking effect** [4].

^[1] Röpke G., et al., 1982 Nucl. Phys. A 379

^[2] Röpke G., et al., 1983 Nucl. Phys. A 399

^[3] Jaqaman H R 1988 Phys. Rev. C 38

^[4] Röpke G, 2009 Phys. Rev. C 79

Research Problem

- In our work we will study the effect of including the center-of-mass (CM) momentum of light cluster on the Mott density.
- All previous calculations ignored CM motion (They put K = 0)
- we will find the **Mott density** of light clusters up to A = 4 (${}^{2}H$: deuteron, ${}^{3}H$ e: helion, ${}^{3}H$: triton, ${}^{4}H$ e: alpha) at different temperatures .

³He-Neutron System

■ We will consider ³He clusters (**helions**) moving in a hot low-density vapour of protons and neutrons.

■ For simplicity, we derive the wave function of a system composed only of one ³He cluster and a free neutron confined in a cubic box of edge **L**.

$$\Psi(1234) = \psi_{space} (1234) \psi_{spin} (1234)$$

Wave Function of ³He

Using Harmonic Oscillator (HO) nuclear shell model the space wavefunction of an isolated **helion** moving with momentum $\hbar \vec{K}$ inside a cubic box of edge L is

$$\psi_{space} (123) = A e^{-\frac{\beta^2}{2} \left[(\vec{r}_1 - \vec{R})^2 + (\vec{r}_2 - \vec{R})^2 + (\vec{r}_3 - \vec{R})^2 \right] \frac{1}{L^{3/2}} e^{i\vec{K} \cdot \vec{R}}$$

A is the normalization constant, $\vec{R} = \frac{\vec{r}_1 + \vec{r}_2 + \vec{r}_3}{3}$

 $\beta^2 = m\omega/\hbar$ where ω is the angular frequency of the HO.

 $\vec{r}_1, \vec{r}_2, \vec{r}_3$ are the position vectors of the nucleons within ³He (the two protons and the neutron respectively).

Wave Function of ³He-Neutron System

So

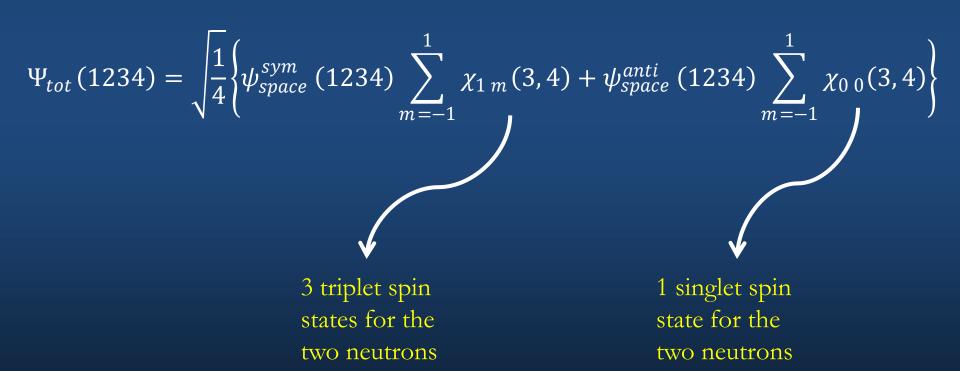
$$\psi_{space} (1234) = \frac{1}{27^{1/4} L^{3/2}} \left(\frac{\beta}{\sqrt{\pi}}\right)^3 e^{-\frac{\beta^2 r^2}{4}} e^{\frac{2}{3}i\vec{K}.\vec{\rho}} e^{-\frac{\beta^2}{3}(\vec{r}_3 - \vec{\rho})^2} e^{i\frac{\vec{K}}{3}.\vec{r}_3} \frac{1}{L^{3/2}} e^{i\vec{k}.\vec{r}_4}$$

where
$$\vec{r} = \vec{r}_1 - \vec{r}_2$$
 and $\vec{\rho} = \frac{\vec{r}_1 + \vec{r}_2}{2}$

- \vec{r}_4 is the position vector of the free neutron.
- $ec{k}$ represents the wave vector of the free neutron.
- \vec{K} represents the wave vector of the ³He nucleus.

Wave Function of ³He-Neutron System

The total wavefunction is antisymmetiric in the two neutrons



Binding Energy of ³He-Neutron System

$$B = B_0 - \langle \Psi_{total} | v_{14} + v_{24} + v_{34} | \Psi_{total} \rangle$$
$$- \langle \Psi_{total} | v_{124} + v_{134} + v_{234} | \Psi_{total} \rangle$$

 B_0 binding energy of an isolated ${}^3\mathrm{He}$ nucleus.

 v_{14} , v_{24} , v_{34} and v_{124} , v_{134} , v_{234} represent the two- and three-body interactions between the bound nucleons and the free neutron.

$$B = B_0 - \frac{t_0}{L^3} \left[\left(\frac{1}{2} + x_0 \right) + \left(1 + \frac{x_0}{2} \right) \frac{1}{\sqrt{27}} \left(\frac{6}{\sqrt{7}} \right)^3 e^{-\frac{6}{7\beta^2} \left(\frac{\vec{K}}{3} - \vec{k} \right)^2} \right] + \frac{t_3}{L^3} \frac{\beta^3}{\pi^{3/2}} \left[\frac{1}{\sqrt{8}} + \frac{1}{2} e^{-\frac{3}{4\beta^2} \left(\frac{\vec{K}}{3} - \vec{k} \right)^2} \right]$$

Binding Energy of ³He Immersed in A Vapour of Nucleons

Considering ³He nucleus immersed in a very low density (*ρ*) vapour of nucleons.

■ Multiplying by the number of nucleons $n = \rho L^3$

$$B = B_0 + \rho \left\{ -t_0 \left[\left(\frac{1}{2} + x_0 \right) + \left(1 + \frac{x_0}{2} \right) \frac{1}{\sqrt{27}} \left(\frac{6}{\sqrt{7}} \right)^3 e^{-\frac{6}{7\beta^2} \left(\frac{\vec{K}}{3} - \vec{k} \right)^2} \right] + t_3 \frac{\beta^3}{\pi^{3/2}} \left[\frac{1}{\sqrt{8}} + \frac{1}{2} e^{-\frac{3}{4\beta^2} \left(\frac{\vec{K}}{3} - \vec{k} \right)^2} \right] \right\}$$

Expectation Value of the Binding Energy

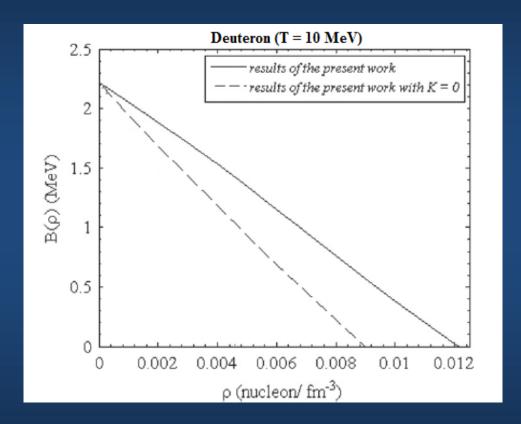
Assuming thermal equilibrium between 3 He nuclei and the surrounding nucleons. Thus, we will take the thermal ensemble average over all values of \vec{k} and \vec{k} using the Fermi-Dirac statistics.

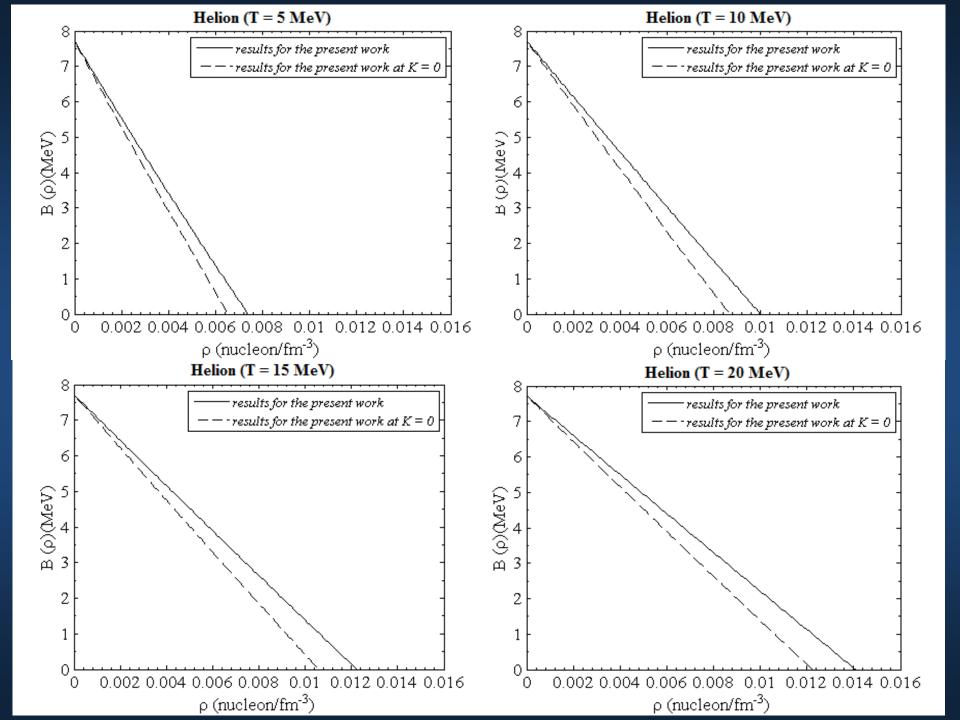
$$\langle B(\rho) \rangle = B_0 + \rho \left\{ -t_0 \left[-\left(\frac{1}{2} + x_0\right) + \left(1 + \frac{x_0}{2}\right) \frac{1}{\sqrt{27}} \left(\frac{6}{\sqrt{7}}\right)^3 \left\langle e^{-\frac{6}{7\beta^2} \left(\frac{\vec{K}}{3} - \vec{k}\right)^2} \right\rangle \right] + t_3 \frac{\beta^3}{\pi^{3/2}} \left[\frac{1}{\sqrt{8}} + \frac{1}{2} \left\langle e^{-\frac{3}{4\beta^2} \left(\frac{\vec{K}}{3} - \vec{k}\right)^2} \right\rangle \right] \right\}$$

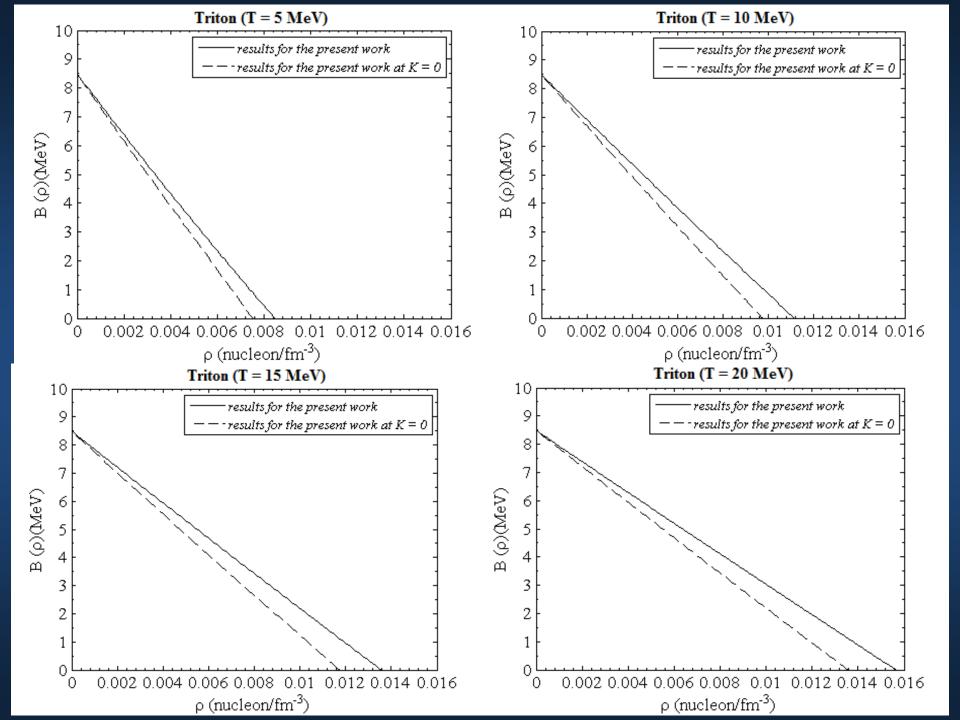
The same procedure is used for other light clusters

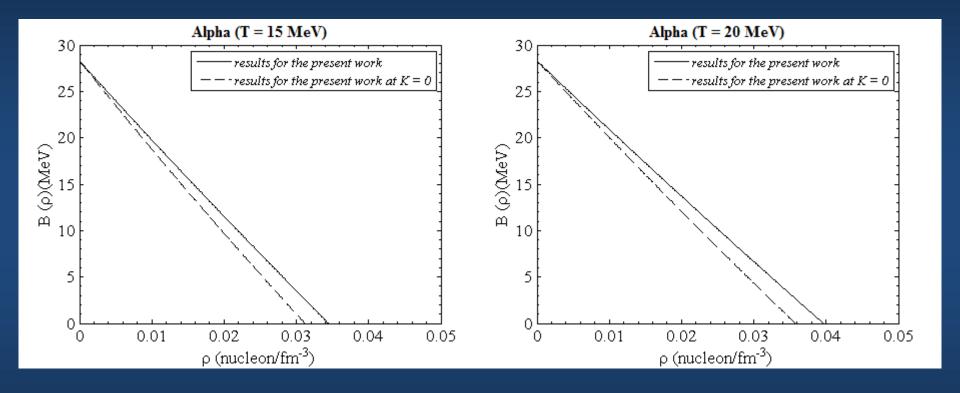
Results

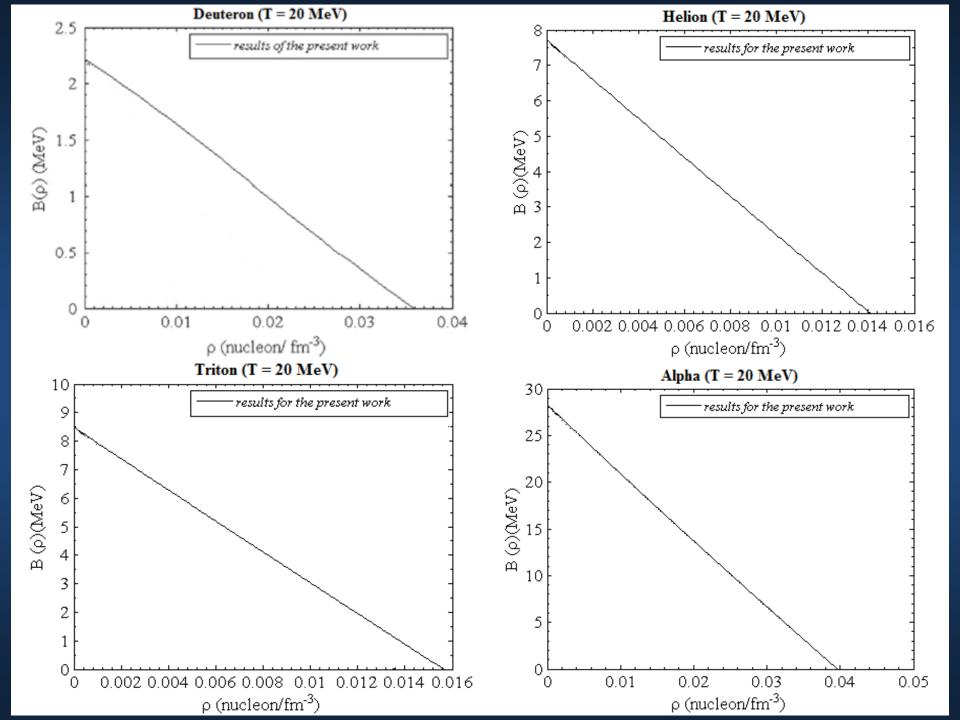
We used MATLAB to evaluate the expectation value of the binding energy as a function of the number density at different temperatures











Review

- Regardless of the temperature, when clusters are moving within the surrounding medium $(\vec{K} \neq 0)$ they can survive up to higher densities than that if they are at rest $(\vec{K} = 0)$. (Pauli blocking effect is less effective in this case).
- As the temperature increases the cluster can survive up to higher densities (Pauli blocking effect is less effective).
- As the mass of the cluster increases the cluster can survive up to higher densities.

Thanks for Your Attention Questions???