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Introduction 

1 

 One of the most important topics in nuclear 

physics is to study the composition, stability, and 

the dynamics of finite nuclear matter (nuclei) 

under different conditions. 

 

 At very low densities nuclear matter is often 

viewed as a vapour of widely separated 

nucleons. 



Introduction 

 Studies indicate that light nuclei (clusters) are 

formed in the vapor at very low vapour densities to 

minimize the energy [1-3]. 

 

 At a certain density of nucleons in the surrounding 

vapour (Mott density) the cluster dissolve and  

become part of the surrounding vapour due to 

Pauli blocking effect [4]. 
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Research Problem 

 In our work we will study the effect of including the 

center-of-mass (CM) momentum of light cluster on 

the Mott density. 

 All previous calculations ignored CM motion (They 

put K = 0) 

 we will find the Mott density of light clusters up to 

A = 4 (2H: deuteron, 3He: helion, 3H: triton, 4He: 

alpha) at different temperatures . 
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3He-Neutron System 

 We will consider 3He clusters (helions) moving in a 

hot low-density vapour of protons and neutrons.  

 

 For simplicity, we derive the wave function of a system 

composed only of one 3He cluster and a free neutron 

confined in a cubic box of edge L. 
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Ψ 1234 = 𝜓𝑠𝑝𝑎𝑐𝑒  1234 𝜓𝑠𝑝𝑖𝑛  1234  



Wave Function of 3He 

 Using Harmonic Oscillator (HO) nuclear shell 

model the space wavefunction of an isolated helion 

moving with momentum       inside a cubic box of 

edge L is 

 

 

        is the normalization constant,                               

                      where     is the angular frequency of the HO. 

                 are the position vectors of the nucleons within 3He (the 

two protons and the neutron respectively). 
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Wave Function of 3He-Neutron 

System 
 So 

 

 

     where                         and  

 

         is the position vector of the free neutron. 

         represents the wave vector of the free neutron. 

         represents the wave vector of the 3He nucleus. 
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Wave Function of 3He-Neutron 

System 

The total wavefunction is antisymmetiric in the 

two neutrons  
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Binding Energy of 3He-Neutron 

System 

 

 

           binding energy of an isolated 3He nucleus. 

                        and                        represent the two- and  three-

body interactions between the bound nucleons and the free 

neutron. 
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Using 

Skyrme 

force [1] 

[1] Skyrme, T. 1959 Nuclear Physic 9(4).  



Binding Energy of 3He Immersed 

in A Vapour of Nucleons 
 Considering 3He nucleus immersed in a very low 

density (  ) vapour of nucleons.  

 

 Multiplying by the number of nucleons 
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Expectation Value of the Binding 

Energy 
 Assuming thermal equilibrium between 3He nuclei 

and the surrounding nucleons. Thus, we will take 

the thermal ensemble average over all values of     

and      using the Fermi-Dirac statistics. 
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The same procedure is used for other light clusters 



Results 
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We used MATLAB to 

evaluate the expectation 

value of  the binding 

energy as a function of  

the number density at 

different  temperatures 
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Review  

 Regardless of the temperature, when clusters are 

moving within the surrounding medium (        ) they 

can survive up to higher densities than that if they 

are at rest       . (Pauli blocking effect is less 

effective in this case).  

 As the temperature increases the cluster can survive 

up to higher densities (Pauli blocking effect is less 

effective). 

 As the mass of the cluster increases the cluster can 

survive up to higher densities.  
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𝐾   ≠ 0 

 𝐾   = 0  
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Thanks for Your Attention  

Questions??? 


