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@ Motivation

@ Backgroung on pairings

e Construction of the beta Weil pairing for k = 15

e Optimal Ate pairing versus beta Weil pairing for k = 15
e Conclusion
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@ Koblitz and Menezes (2005) suggest that for very high security levels
such as 192 or 256 bits, the Weil pairing computation is sometimes
faster than the Tate pairing.

@ contrary to prior work, Granger et al (2006) conclude that the Tate
pairing is more efficient than the Weil pairing for all such security
levels. The new variants of Tate pairing like ate pairing and optimal
ate are still more efficient than Tate.

@ Aranha et al (2011) introduce a new optimal Weil pairing tailored for
parallel execution. For the current security level 128-bits, their
experimental results suggest that the new Weil pairing over
Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.
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@ Koblitz and Menezes (2005) suggest that for very high security levels
such as 192 or 256 bits, the Weil pairing computation is sometimes
faster than the Tate pairing.

@ contrary to prior work, Granger et al (2006) conclude that the Tate
pairing is more efficient than the Weil pairing for all such security
levels. The new variants of Tate pairing like ate pairing and optimal
ate are still more efficient than Tate.

@ Aranha et al (2011) introduce a new optimal Weil pairing tailored for
parallel execution. For the current security level 128-bits, their
experimental results suggest that the new Weil pairing over
Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.

Question : For the next security level 192 bits, the Aranha's result is always
satisfied ?

Optimal Weil pairing on Elliptic curves wit



Backgroung on pairing

Pairing

Let G1, G, be the additive groups and G a multiplicative group.

A pairing is a non-degenerate bilinear map of the form

e: Gy x Gy —> G, i.e. eis linear in each component and there exists
P € G; and Q € G, such that e(P, Q) # 1.
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Backgroung on pairing

We denote by :

o Fg a finite field of characteristic p where p > 3 is prime.

o E an ordinary elliptic curve defined over [F,.
r a large prime divisor of the order of E(FFy).

k the embedding degree with respect to r and g, i.e. the smallest
positive integer such that r divides g% — 1.

t a trace of Frobenius, i.e. t = g+ 1— # E(FFy).
O the point at infinity.

1, the group of r-th roots of unity in F:k.

E[r] is the set of r—torsion points on E.
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Backgroung on pairing

Definition : Miller function

Let R € E(F) and m € Z. A Miller function f, g of length m is a
IF «-rational function with divisor (fy, gr) = m(R) — ([m]R) — (m — 1)O.

q

Lemma

| A\

Let a and b be non-negative integers, and let R € E(F ). Then

(4 ) ﬁa-}-b,R = f:a,R-fb,R'l[a]R,[b]R/V[a—i-b]R: where /[a]R,[b]R is the equation of
the line through [a]R and [b]R and v| ;g is the corresponding
vertical line passing through [a + b]R.

Q fapr = filR-TablR
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Why pairing-friendly elliptic curves?

@ For randomly generated elliptic curves, we have k = r, so impossible
to compute pairing (because result is in IF )

@ = Thus for a constructive applications of pairings, we must find the
special kind of elliptic curves such that :

o k needs to be small enough, so that the pairing is easy to compute.
e but large enough, so that the DL in F:k is computationally infeasible.

Definition : Pairing-friendly elliptic curve
E is pairing-friendly if the two conditions hold :

Qr>.q;
@ k is less than logx(r)/8.
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Pairing friendly elliptic curves with kK = 15

Now we assume that g = p is a prime and k = 15, so we have
E[r] C E(Fps).

This familly of elliptic curves has embedding degree 15 and a p-value 1.5
and is parametrized by :

= (2 =2 4519 4+ x7 —2x% + x5 + x%2 + x +1)/3
ro= X —x"+x5-x*+x3—x+1 (1)
= x+1

We found a specific value x = 248 4241 + 29 1 28 + 1 and we obtain r(x)
prime of 385 bits and p(x) prime of 575 bits which correspond to
parameters for 192-bits security level according to Table.
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Table — Bit sizes of curves parameters and corresponding embedding degrees to
obtain commonly desired levels of security.

Security | Bit length of | Bit length of k k
level r qk p~=1 P2
80 160 960 — 1230 6—8 3—4
128 256 3000 —5000 | 12—20| 6—10
192 384 8000 — 10000 | 20 —26 | 10 —13
256 512 14000 — 18000 | 28 — 36 | 14 — 18
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Pairing computation

The most common choice is to take the groups :
o Gy = E[r] N ker(mp — [1]) = E(Fp)[r]
o Go = E[r]N ker(mp — [p]) C E(F 15 )]r]

where 7, is the p-power Frobenius endomorphism on E.

Reduced Tate pairing

The reduced Tate pairing restricted to G; x Gy is defined as :

o151

e : G xGy — pr, (P,Q)r— £ p(Q) -

Restricting the Tate pairing to G, X Gy leads to the ate pairing.
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Pairing computation

Ate pairing

The ate pairing is defined as

(p®-1)

at : Gy x Gy = pr, (Q,P)— fro(P)

where T =t — 1.

Weil pairing

The classical Weil pairing is defined as

fr,P(Q)
fra(P)

ew:G1 xGy, — Gt (P, Q) — (_1)r
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Pairing computation

Miller's algorithm

Inputs : s € N and U,V € E[r] with U # V
outputs : f5 y(V)
Write s = Y7 5,2/, with s; € {0,1} and s, = 1
Set f+ 1land R+ U
For j = n—1 down to 0 do
f <+ f2 ° /R’R(V)/V2R(V),
R+ 2R
if s; =1 then
f+«f- IR,U(V)/VR+U(V)
R+ R+ U,
end if
end for
return f
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Optimal pairing

Optimal pairing

Let e : G X G2 — G7 be a non degenerate, bilinear pairing with

|G1| = |Ga| = |G1| = r, where the field of definition of Gt is F, then e
is called an optimal pairing if it can be computed in logar/p(k) + €(k)
basic Miller iterations, with €(k) < logok.

Extended Miller function

| A\

For a point R € E[r] and polynomial h = Zh z' € 7Z|z] such that h(s) =0
(mod r). The extended Miller function fs h.R is a rational function defined

n
as [[fy siR- w where s; = Zh s/ with divisor Zh [(s'R) — O].
i=0 i=0 & Jj=i i
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optimal pairing

Note that f; g = fs s—x,r, With x an integer.

Due to Vercauteren,

There exists h such that |h;| < r'/¢(K) and (P, Q) — fp7h7Q(P)(pk_1)/r is a
pairing.
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Remark

The coefficients h; can be obtained by finding the shortest vector in the
r 0 0 ... O
g 1 0 .. 0
following ¢(k)-dimensional lattice —q? 0o 1 .. 0
_q;;('k)—1 0 0 1
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Remark

The coefficients h; can be obtained by finding the shortest vector in the

r 0 0 ... O

g 1 0 .. 0

following ((k)-dimensional lattice —q? 0 1 .. 0
N

According to Aranha’s beta Weil pairing framework on elliptic curves with
even k,

. fona(P)\P
We define 05 4(P, Q) = <ShQ()> when 3|k.
’ fs.n.p(Q)
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Optimal pairing

There exists h such that |h;| < r'/¢(K) and

S : e—1—i . ..
(P, Q) — [16pn([p']P, Q)P is a pairing.
i=0
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Optimal pairing

The Vercautern approach enabled us to obtain the following optimal
5

function h(z) = Y. ¢z’ = x — z € Z|z] such that h(p) =0 (mod r) for the
i=0

elliptic curves with kK = 15 and according to theorem 1 and theorem 2, we
can define now
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Optimal pairing

The Vercautern approach enabled us to obtain the following optimal
5 .
function h(z) = ) ciz' = x — z € Z|z] such that h(p) = 0 (mod r) for the
i=0
elliptic curves with kK = 15 and according to theorem 1 and theorem 2, we
can define now

Optimal ate pairing on elliptic curves with kK = 15

The optimal ate pairing is defined as

(p'°-1)

€ : Gy xG1 = pr, (Q,P)— f(P)
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Elliptic curves with kK = 15

optimal Weil pairing on elliptic curve with kK = 15

Bis: G x G — L

4 fx,[xi]P(Q)
e = [H (Fem)

pi—i7 (PP=1)(P*~1)
|
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Pairing computation

My, Sk, Ik : Cost of multiplication, squaring and Inversion in the field I,
for any integer k.
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Pairing computation

Notation

My, Sk, Ik : Cost of multiplication, squaring and Inversion in the field I,
for any integer k.

The Miller lite loop f, p(Q) and full Miller loop £, o(P) requires 48
doublings step, 4 additions step, 47 squarings in [F;1s and 51
multiplications in I ys.
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Pairing computation

Table — Cost of the Miller lite and full Miller loop.

Miller lite loop full Miller loop

Aff 525 + 3491M, + 2219S5;. | 52/ + 6299M; + 33115,

Proj 4283M; + 25675; 4911M; + 61835,

Proj 4271 M, + 25675; 4803 M, + 61835,
(mixed add)

Jac 4619M; + 2471S; 53195; + 5739M;

Jac 24715, + 4607 M, 53195; + 5631M;
(mixed add)
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Optimal ate pairing computation

Its computation have two steps :

o the full Miller loop £ o(P)

: . . (P'0+p°+1)/r
@ the final exponentiation which is computed as (fps_l)

the overall cost of final exponentiation is /; + 3093M; + 240445;.
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Optimal Weil pairing computation

@ We assume that the points [x]P, [x%]P, [x3]P and [x*]P are
precomputed.
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Optimal Weil pairing computation

o We assume that the points [x]P, [x?]P, [x3]P and [x*]P are
precomputed.

@ The cost of the doubling and the addition steps in the Miller’s
algorithm for £, 1.i111p(Q) with i € {1,2,3,4} is the same with
fX,P(Q)-
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Optimal Weil pairing computation

o We assume that the points [x]P, [x?]P, [x3]P and [x*]P are
precomputed.

@ The cost of the doubling and the addition steps in the Miller’s
algorithm for £, 1.i111p(Q) with i € {1,2,3,4} is the same with
fX,P(Q)-

@ The ten Miller functions of 5 Weil pairing defined above can be
computed in parallel using 10 processors.
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Optimal Weil pairing computation

o We assume that the points [x]P, [x?]P, [x3]P and [x*]P are
precomputed.

@ The cost of the doubling and the addition steps in the Miller’s
algorithm for £, 1.i111p(Q) with i € {1,2,3,4} is the same with
fX,P(Q)-

@ The ten Miller functions of 5 Weil pairing defined above can be
computed in parallel using 10 processors.

@ Each processor computes either one Miller lite loop or one full Miller
loop and one p'-frobenius maps (i € {0,1,2,3,4}).
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Optimal Weil pairing computation

o We assume that the points [x]P, [x?]P, [x3]P and [x*]P are
precomputed.

@ The cost of the doubling and the addition steps in the Miller’s
algorithm for £, 1.i111p(Q) with i € {1,2,3,4} is the same with
fX,P(Q)-

@ The ten Miller functions of 5 Weil pairing defined above can be
computed in parallel using 10 processors.

@ Each processor computes either one Miller lite loop or one full Miller
loop and one p'-frobenius maps (i € {0,1,2,3,4}).

@ The computation of the final step requires 1 inversion and 9
multiplications in 15 .
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Optimal Weil pairing computation

o We assume that the points [x]P, [x?]P, [x3]P and [x*]P are
precomputed.

@ The cost of the doubling and the addition steps in the Miller’s
algorithm for £, 1.i111p(Q) with i € {1,2,3,4} is the same with
fX,P(Q)-

@ The ten Miller functions of 5 Weil pairing defined above can be
computed in parallel using 10 processors.

@ Each processor computes either one Miller lite loop or one full Miller
loop and one p'-frobenius maps (i € {0,1,2,3,4}).

@ The computation of the final step requires 1 inversion and 9
multiplications in 15 .

@ The final exponentiation cost : 1/; + 1467 M; + 865;
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).

If we assume that 15; = 1My and 1/ = 10M;.
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).

If we assume that 15; = 1My and 1/ = 10M;.
We denote by :

MLite = the cost of the Miller lite loop
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).

If we assume that 15; = 1My and 1/ = 10M;.
We denote by :

MLite = the cost of the Miller lite loop
FullM = the cost of full Miller loop
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).

If we assume that 15; = 1My and 1/ = 10M;.
We denote by :

MLite = the cost of the Miller lite loop
FullM = the cost of full Miller loop
FS = the cost of the final step
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).

If we assume that 15; = 1My and 1/ = 10M;.
We denote by :

MLite = the cost of the Miller lite loop
FullM = the cost of full Miller loop
FS = the cost of the final step

FE = the cost of the final exponentiation
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate
pairing with the cost of the operations executed by each processor to which
is added the final step and the final exponentiation by (p°> — 1)(p® — 1).

If we assume that 15; = 1My and 1/ = 10M;.
We denote by :

MLite = the cost of the Miller lite loop
FullM = the cost of full Miller loop

FS = the cost of the final step

FE = the cost of the final exponentiation

Frob = the cost of p-power Frobenius
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Comparisons

Table — Cost comparision of the optimal Ate and 3 Weil pairing

MLite+FS+FE+Frob | FullM+FS+FE+Frob | optimal Ate

Aff 7299 M, 11199M, 33966 M,

Proj 7919M, 12163M; 38241 M,

Proj 7907 M, 12055M; 38133M;
(mixed add)

Jac 8159M, 12127 M, 38205M;

Jac 8147M, 12019M, 38097 My
(mixed add)
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Conclusion

The optimal weil pairing has the potential speed advantage over the

optimal ate pairing due to the absence of an expensive final exponentiation
and suitable for parallel execution.
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