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Motivation

Koblitz and Menezes (2005) suggest that for very high security levels

such as 192 or 256 bits, the Weil pairing computation is sometimes

faster than the Tate pairing.

contrary to prior work, Granger et al (2006) conclude that the Tate

pairing is more e�cient than the Weil pairing for all such security

levels. The new variants of Tate pairing like ate pairing and optimal

ate are still more e�cient than Tate.

Aranha et al (2011) introduce a new optimal Weil pairing tailored for

parallel execution. For the current security level 128-bits, their

experimental results suggest that the new Weil pairing over

Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.

Question : For the next security level 192 bits, the Aranha's result is always

satis�ed ?
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Backgroung on pairing

Pairing

Let G1, G2 be the additive groups and GT a multiplicative group.

A pairing is a non-degenerate bilinear map of the form

e : G1 ×G2 −→ GT , i.e. e is linear in each component and there exists

P ∈ G1 and Q ∈ G2 such that e(P,Q) 6= 1.
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Backgroung on pairing

We denote by :

Fq a �nite �eld of characteristic p where p > 3 is prime.

E an ordinary elliptic curve de�ned over Fq.

r a large prime divisor of the order of E (Fq).

k the embedding degree with respect to r and q, i.e. the smallest

positive integer such that r divides qk − 1.

t a trace of Frobenius, i.e. t = q + 1− ==// E (Fq).

O the point at in�nity.

µr the group of r -th roots of unity in F×
qk
.

E [r ] is the set of r−torsion points on E .

(ISS) Optimal Weil pairing on Elliptic curves with Embedding Degree 15. 5 / 25



Backgroung on pairing

De�nition : Miller function

Let R ∈ E (Fqk ) and m ∈ Z. A Miller function fm,R of length m is a

Fqk -rational function with divisor (fm,R) = m(R)− ([m]R)− (m − 1)O.

Lemma

Let a and b be non-negative integers, and let R ∈ E (Fqk ). Then

1 fa+b,R = fa,R .fb,R .l[a]R,[b]R/v[a+b]R , where l[a]R,[b]R is the equation of

the line through [a]R and [b]R and v[a+b]R is the corresponding

vertical line passing through [a+ b]R .

2 fab,R = f ab,R .fa,[b]R .
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Why pairing-friendly elliptic curves ?

For randomly generated elliptic curves, we have k ≈ r , so impossible

to compute pairing (because result is in Fqk )

⇒ Thus for a constructive applications of pairings, we must �nd the
special kind of elliptic curves such that :

k needs to be small enough, so that the pairing is easy to compute.
but large enough, so that the DL in F×

qk is computationally infeasible.

De�nition : Pairing-friendly elliptic curve

E is pairing-friendly if the two conditions hold :

1 r ≥ √q ;
2 k is less than log2(r)/8.
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Pairing friendly elliptic curves with k = 15

Now we assume that q = p is a prime and k = 15, so we have

E [r ] ⊂ E (Fp15).

This familly of elliptic curves has embedding degree 15 and a ρ-value 1.5
and is parametrized by :

p = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x + 1)/3
r = x8 − x7 + x5 − x4 + x3 − x + 1

t = x + 1

(1)

We found a speci�c value x = 248 + 241 + 29 + 28 + 1 and we obtain r(x)
prime of 385 bits and p(x) prime of 575 bits which correspond to

parameters for 192-bits security level according to Table.
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Table � Bit sizes of curves parameters and corresponding embedding degrees to
obtain commonly desired levels of security.

Security Bit length of Bit length of k k
level r qk ρ ≈ 1 ρ ≈ 2

80 160 960− 1280 6− 8 3− 4

128 256 3000− 5000 12− 20 6− 10

192 384 8000− 10000 20− 26 10− 13

256 512 14000− 18000 28− 36 14− 18
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Pairing computation

The most common choice is to take the groups :

G1 = E [r ] ∩ ker(πp − [1]) = E (Fp)[r ]

G2 = E [r ] ∩ ker(πp − [p]) ⊂ E (Fp15)[r ]

where πp is the p-power Frobenius endomorphism on E .

Reduced Tate pairing

The reduced Tate pairing restricted to G1 ×G2 is de�ned as :

er : G1 ×G2 −→ µr , (P,Q) 7−→ fr ,P(Q)
p15−1

r

Restricting the Tate pairing to G2 ×G1 leads to the ate pairing.
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Pairing computation

Ate pairing

The ate pairing is de�ned as

aT : G2 ×G1 → µr , (Q,P) 7→ fT ,Q(P)
(p15−1)

r ,

where T = t − 1.

Weil pairing

The classical Weil pairing is de�ned as

eW : G1 ×G2 −→ GT (P,Q) 7→ (−1)r
fr ,P(Q)

fr ,Q(P)
.
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Pairing computation

Miller's algorithm

Inputs : s ∈ N and U,V ∈ E [r ] with U 6= V
outputs : fs,U(V )
Write s =

∑n
j=0

sj2
j , with sj ∈ {0, 1} and sn = 1

Set f ← 1 and R ← U
For j = n − 1 down to 0 do

f ← f 2 · lR,R(V )/v2R(V ),
R ← 2R
if sj = 1 then

f ← f · lR,U(V )/vR+U(V )
R ← R + U,

end if

end for

return f
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Optimal pairing

Optimal pairing

Let e : G1 ×G2 −→ GT be a non degenerate, bilinear pairing with

|G1| = |G2| = |GT | = r , where the �eld of de�nition of GT is Fqk , then e
is called an optimal pairing if it can be computed in log2r/ϕ(k) + ε(k)
basic Miller iterations, with ε(k) ≤ log2k .

Extended Miller function

For a point R ∈ E [r ] and polynomial h =
n∑

i=0

hiz
i ∈ Z[z ] such that h(s) ≡ 0

(mod r). The extended Miller function fs,h,R is a rational function de�ned

as
n∏

i=0

fhi ,s iR .
n−1∏
i=0

l
[si+1]R,[hi s

i ]R

v[si R]
where si =

n∑
j=i

hjs
j with divisor

n∑
i=0

hi [(s
iR)−O].
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optimal pairing

Remark

Note that fs,R = fs,s−x ,R , with x an integer.

Due to Vercauteren,

Theorem 1

There exists h such that |hi | ≤ r1/ϕ(k) and (P,Q) 7→ fp,h,Q(P)
(pk−1)/r is a

pairing.
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Remark

The coe�cients hi can be obtained by �nding the shortest vector in the

following ϕ(k)-dimensional lattice


r 0 0 ... 0

−q 1 0 ... 0

−q2 0 1 ... 0

... ... ... ... ...

−qϕ(k)−1 0 0 ... 1



According to Aranha's beta Weil pairing framework on elliptic curves with

even k ,

We de�ne θs,h(P,Q) =

(
fs,h,Q(P)

fs,h,P(Q)

)pk/3−1

when 3|k .
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Optimal pairing

Theorem 2

There exists h such that |hi | ≤ r1/ϕ(k) and

(P,Q) 7−→
e−1∏
i=0

θp,h([p
i ]P,Q)p

e−1−i
is a pairing.

(ISS) Optimal Weil pairing on Elliptic curves with Embedding Degree 15. 16 / 25



Optimal pairing

The Vercautern approach enabled us to obtain the following optimal

function h(z) =
5∑

i=0

ciz
i = x − z ∈ Z[z ] such that h(p) ≡ 0 (mod r) for the

elliptic curves with k = 15 and according to theorem 1 and theorem 2, we

can de�ne now

Optimal ate pairing on elliptic curves with k = 15

The optimal ate pairing is de�ned as

eo : G2 ×G1 → µr , (Q,P) 7→ fx ,Q(P)
(p15−1)

r ,

.
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Elliptic curves with k = 15

optimal Weil pairing on elliptic curve with k = 15

β15 : G1 × G2 −→ µr

(P,Q) 7−→

[
4∏

i=0

(
fx ,[x i ]P(Q)

fx ,Q([x i ]P)

)p4−i](p5−1)(p3−1)
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Pairing computation

Notation

Mk , Sk , Ik : Cost of multiplication, squaring and Inversion in the �eld Fpk ,

for any integer k .

The Miller lite loop fx ,P(Q) and full Miller loop fx ,Q(P) requires 48
doublings step, 4 additions step, 47 squarings in Fp15 and 51

multiplications in Fp15 .
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Pairing computation

Table � Cost of the Miller lite and full Miller loop.

Miller lite loop full Miller loop

A� 52I1 + 3491M1 + 2219S1. 52I1 + 6299M1 + 3311S1
Proj 4283M1 + 2567S1 4911M1 + 6183S1
Proj 4271M1 + 2567S1 4803M1 + 6183S1

(mixed add)

Jac 4619M1 + 2471S1 5319S1 + 5739M1

Jac 2471S1 + 4607M1 5319S1 + 5631M1

(mixed add)
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Optimal ate pairing computation

Its computation have two steps :

the full Miller loop fx ,Q(P)

the �nal exponentiation which is computed as
(
f p

5−1

)(p10+p5+1)/r

the overall cost of �nal exponentiation is I1 + 3093M1 + 24044S1.
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Optimal Weil pairing computation

We assume that the points [x ]P , [x2]P , [x3]P and [x4]P are

precomputed.

The cost of the doubling and the addition steps in the Miller's

algorithm for fx ,[x i+1]P(Q) with i ∈ {1, 2, 3, 4} is the same with

fx ,P(Q).

The ten Miller functions of β Weil pairing de�ned above can be

computed in parallel using 10 processors.

Each processor computes either one Miller lite loop or one full Miller

loop and one pi -frobenius maps (i ∈ {0, 1, 2, 3, 4}).
The computation of the �nal step requires 1 inversion and 9

multiplications in Fp15 .

The �nal exponentiation cost : 1I1 + 1467M1 + 86S1
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Comparisons

Our comparision focuses only on the cost of the operations of optimal ate

pairing with the cost of the operations executed by each processor to which

is added the �nal step and the �nal exponentiation by (p5 − 1)(p3 − 1).

If we assume that 1S1 = 1M1 and 1I1 = 10M1.

We denote by :

MLite = the cost of the Miller lite loop

FullM = the cost of full Miller loop

FS = the cost of the �nal step

FE = the cost of the �nal exponentiation

Frob = the cost of p-power Frobenius
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Comparisons

Table � Cost comparision of the optimal Ate and β Weil pairing

MLite+FS+FE+Frob FullM+FS+FE+Frob optimal Ate

A� 7299M1 11199M1 33966M1

Proj 7919M1 12163M1 38241M1

Proj 7907M1 12055M1 38133M1

(mixed add)

Jac 8159M1 12127M1 38205M1

Jac 8147M1 12019M1 38097M1

(mixed add)
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Conclusion

The optimal weil pairing has the potential speed advantage over the

optimal ate pairing due to the absence of an expensive �nal exponentiation

and suitable for parallel execution.
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