# Optimal Weil pairing on Elliptic curves with Embedding Degree 15. 1

Aminatou PECHA Institut Supérieur du Sahel, Université de Maroua-Cameroun

African Mathematical School-CRAG 6 on Cryptography, Information
Security and Financial Mathematics

HTTC Bambili, 6-17 June 2016, University of Bamenda

<sup>1.</sup> Supported by: PRMAIS

#### Outline

- Motivation
- Backgroung on pairings
- ullet Construction of the beta Weil pairing for k=15
- ullet Optimal Ate pairing versus beta Weil pairing for k=15
- Conclusion

#### Motivation

- Koblitz and Menezes (2005) suggest that for very high security levels such as 192 or 256 bits, the Weil pairing computation is sometimes faster than the Tate pairing.
- contrary to prior work, Granger et al (2006) conclude that the Tate pairing is more efficient than the Weil pairing for all such security levels. The new variants of Tate pairing like ate pairing and optimal ate are still more efficient than Tate.
- Aranha et al (2011) introduce a new optimal Weil pairing tailored for parallel execution. For the current security level 128-bits, their experimental results suggest that the new Weil pairing over Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.

#### Motivation

- Koblitz and Menezes (2005) suggest that for very high security levels such as 192 or 256 bits, the Weil pairing computation is sometimes faster than the Tate pairing.
- contrary to prior work, Granger et al (2006) conclude that the Tate pairing is more efficient than the Weil pairing for all such security levels. The new variants of Tate pairing like ate pairing and optimal ate are still more efficient than Tate.
- Aranha et al (2011) introduce a new optimal Weil pairing tailored for parallel execution. For the current security level 128-bits, their experimental results suggest that the new Weil pairing over Barreto-Naehrig (BN) curves is faster than the optimal Ate pairing.

Question: For the next security level 192 bits, the Aranha's result is always satisfied?



# Backgroung on pairing

#### **Pairing**

Let  $\mathbb{G}_1$ ,  $\mathbb{G}_2$  be the additive groups and  $\mathbb{G}_T$  a multiplicative group. A pairing is a non-degenerate bilinear map of the form  $e:\mathbb{G}_1\times\mathbb{G}_2\longrightarrow\mathbb{G}_T$ , i.e. e is linear in each component and there exists  $P\in\mathbb{G}_1$  and  $Q\in\mathbb{G}_2$  such that  $e(P,Q)\neq 1$ .

# Backgroung on pairing

#### We denote by :

- $\mathbb{F}_q$  a finite field of characteristic p where p > 3 is prime.
- E an ordinary elliptic curve defined over  $\mathbb{F}_q$ . r a large prime divisor of the order of  $E(\mathbb{F}_q)$ .
- k the embedding degree with respect to r and q, i.e. the smallest positive integer such that r divides  $q^k 1$ .
- t a trace of Frobenius, i.e.  $t = q + 1 \# E(\mathbb{F}_q)$ .
- O the point at infinity.
- ullet  $\mu_r$  the group of r-th roots of unity in  $\mathbb{F}_{q^k}^{\times}$ .
- E[r] is the set of r—torsion points on E.

# Backgroung on pairing

#### Definition: Miller function

Let  $R \in E(\mathbb{F}_{q^k})$  and  $m \in \mathbb{Z}$ . A Miller function  $f_{m,R}$  of length m is a  $\mathbb{F}_{q^k}$ -rational function with divisor  $(f_{m,R}) = m(R) - ([m]R) - (m-1)\mathcal{O}$ .

#### Lemma

Let a and b be non-negative integers, and let  $R \in E(\mathbb{F}_{q^k})$ . Then

- $f_{a+b,R} = f_{a,R}.f_{b,R}.I_{[a]R,[b]R}/v_{[a+b]R}$ , where  $I_{[a]R,[b]R}$  is the equation of the line through [a]R and [b]R and  $v_{[a+b]R}$  is the corresponding vertical line passing through [a+b]R.
- 2  $f_{ab,R} = f_{b,R}^a f_{a,[b]R}$

# Why pairing-friendly elliptic curves?

- For randomly generated elliptic curves, we have  $k \approx r$ , so impossible to compute pairing (because result is in  $\mathbb{F}_{a^k}$ )
- Thus for a constructive applications of pairings, we must find the special kind of elliptic curves such that :
  - $\bullet$  k needs to be small enough, so that the pairing is easy to compute.
  - ullet but large enough, so that the DL in  $\mathbb{F}_{q^k}^{ imes}$  is computationally infeasible.

#### Definition: Pairing-friendly elliptic curve

*E* is pairing-friendly if the two conditions hold :

- $r \geq \sqrt{q};$
- 2 k is less than  $log_2(r)/8$ .



# Pairing friendly elliptic curves with k = 15

Now we assume that q=p is a prime and k=15, so we have  $E[r]\subset E(\mathbb{F}_{p^{15}}).$ 

This familly of elliptic curves has embedding degree 15 and a  $\rho$ -value 1.5 and is parametrized by :

$$p = (x^{12} - 2x^{11} + x^{10} + x^7 - 2x^6 + x^5 + x^2 + x + 1)/3$$

$$r = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$$

$$t = x + 1$$
(1)

We found a specific value  $x = 2^{48} + 2^{41} + 2^9 + 2^8 + 1$  and we obtain r(x) prime of 385 bits and p(x) prime of 575 bits which correspond to parameters for 192-bits security level according to Table.



Table – Bit sizes of curves parameters and corresponding embedding degrees to obtain commonly desired levels of security.

| Security | Bit length of | Bit length of | k                | k                |
|----------|---------------|---------------|------------------|------------------|
| level    | r             | $q^k$         | $\rho \approx 1$ | $\rho \approx 2$ |
| 80       | 160           | 960 — 1280    | 6 – 8            | 3 – 4            |
| 128      | 256           | 3000 — 5000   | 12 - 20          | 6 — 10           |
| 192      | 384           | 8000 - 10000  | 20 - 26          | 10 – 13          |
| 256      | 512           | 14000 - 18000 | 28 – 36          | 14 – 18          |

The most common choice is to take the groups :

- $\mathbb{G}_1 = E[r] \cap \ker(\pi_p [1]) = E(\mathbb{F}_p)[r]$
- $\mathbb{G}_2 = E[r] \cap \ker(\pi_p [p]) \subset E(\mathbb{F}_{p^{15}})[r]$

where  $\pi_p$  is the *p*-power Frobenius endomorphism on *E*.

#### Reduced Tate pairing

The reduced Tate pairing restricted to  $\mathbb{G}_1 \times \mathbb{G}_2$  is defined as :

$$e_r: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mu_r, \ \ (P,Q) \longmapsto f_{r,P}(Q)^{\frac{p^{15}-1}{r}}$$

Restricting the Tate pairing to  $\mathbb{G}_2 \times \mathbb{G}_1$  leads to the ate pairing.

#### Ate pairing

The ate pairing is defined as

$$a_{\mathcal{T}}: \mathbb{G}_2 \times \mathbb{G}_1 \to \mu_r, \ \ (Q,P) \mapsto f_{\mathcal{T},Q}(P)^{\frac{(\rho^{1b}-1)}{r}},$$

where T = t - 1.

#### Weil pairing

The classical Weil pairing is defined as

$$e_W: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T \ (P,Q) \mapsto (-1)^r \frac{f_{r,P}(Q)}{f_{r,Q}(P)}.$$



#### Miller's algorithm

```
Inputs : s \in \mathbb{N} and U, V \in E[r] with U \neq V
outputs : f_{s,U}(V)
Write s = \sum_{i=0}^n s_i 2^j, with s_i \in \{0,1\} and s_n = 1
Set f \leftarrow 1 and R \leftarrow U
For i = n - 1 down to 0 do
         f \leftarrow f^2 \cdot I_{R,R}(V)/v_{2R}(V)
         R \leftarrow 2R
         if s_i = 1 then
             f \leftarrow f \cdot I_{R,U}(V)/v_{R+U}(V)
            R \leftarrow R + U.
        end if
  end for
return f
```

#### Optimal pairing

Let  $e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$  be a non degenerate, bilinear pairing with  $|\mathbb{G}_1| = |\mathbb{G}_2| = |\mathbb{G}_T| = r$ , where the field of definition of  $\mathbb{G}_T$  is  $\mathbb{F}_{q^k}$ , then e is called an optimal pairing if it can be computed in  $log_2 r/\varphi(k) + \epsilon(k)$  basic Miller iterations, with  $\epsilon(k) \leq log_2 k$ .

#### Extended Miller function

For a point  $R \in E[r]$  and polynomial  $h = \sum_{i=0}^n h_i z^i \in \mathbb{Z}[z]$  such that  $h(s) \equiv 0$  (mod r). The extended Miller function  $f_{s,h,R}$  is a rational function defined as  $\prod_{i=0}^n f_{h_i,s^iR}$ .  $\prod_{i=0}^{n-1} \frac{I_{[s_i+1]R,[h_is^i]R}}{v_{[s_iR]}}$  where  $s_i = \sum_{j=i}^n h_j s^j$  with divisor  $\sum_{i=0}^n h_i [(s^iR) - \mathcal{O}]$ .

#### Remark

Note that  $f_{s,R} = f_{s,s-x,R}$ , with x an integer.

Due to Vercauteren,

#### Theorem 1

There exists h such that  $|h_i| \leq r^{1/\varphi(k)}$  and  $(P,Q) \mapsto f_{p,h,Q}(P)^{(p^k-1)/r}$  is a pairing.

#### Remark

The coefficients  $h_i$  can be obtained by finding the shortest vector in the

#### Remark

The coefficients  $h_i$  can be obtained by finding the shortest vector in the

following 
$$\varphi(k)$$
-dimensional lattice 
$$\begin{pmatrix} r & 0 & 0 & \dots & 0 \\ -q & 1 & 0 & \dots & 0 \\ -q^2 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -q^{\varphi(k)-1} & 0 & 0 & \dots & 1 \end{pmatrix}$$

According to Aranha's beta Weil pairing framework on elliptic curves with even k,

We define 
$$\theta_{s,h}(P,Q) = \left(\frac{f_{s,h,Q}(P)}{f_{s,h,P}(Q)}\right)^{p^{k/3}-1}$$
 when  $3|k$ .

#### Theorem 2

There exists h such that  $|h_i| \leq r^{1/arphi(k)}$  and

$$(P,Q)\longmapsto\prod_{i=0}^{e-1}\theta_{p,h}([p^i]P,Q)^{p^{e-1-i}}$$
 is a pairing.

The Vercautern approach enabled us to obtain the following optimal function  $h(z)=\sum\limits_{i=0}^5 c_iz^i=x-z\in\mathbb{Z}[z]$  such that  $h(p)\equiv 0\pmod r$  for the elliptic curves with k=15 and according to theorem 1 and theorem 2, we can define now

The Vercautern approach enabled us to obtain the following optimal function  $h(z)=\sum\limits_{i=0}^5c_iz^i=x-z\in\mathbb{Z}[z]$  such that  $h(p)\equiv 0\pmod r$  for the elliptic curves with k=15 and according to theorem 1 and theorem 2, we can define now

#### Optimal ate pairing on elliptic curves with k = 15

The optimal ate pairing is defined as

$$e_o: \mathbb{G}_2 \times \mathbb{G}_1 \to \mu_r, \ \ (Q, P) \mapsto f_{x,Q}(P)^{\frac{(p^{15}-1)}{r}},$$

#### Elliptic curves with k = 15

#### optimal Weil pairing on elliptic curve with k=15

$$\beta_{15}: G_1 \times G_2 \longrightarrow \mu_r$$

$$(P,Q) \longmapsto \left[ \prod_{i=0}^4 \left( \frac{f_{x,[x^i]P}(Q)}{f_{x,Q}([x^i]P)} \right)^{\rho^{4-i}} \right]^{(\rho^5-1)(\rho^3-1)}$$

#### Notation

 $M_k$ ,  $S_k$ ,  $I_k$ : Cost of multiplication, squaring and Inversion in the field  $\mathbb{F}_{p^k}$ , for any integer k.

#### Notation

 $M_k$ ,  $S_k$ ,  $I_k$ : Cost of multiplication, squaring and Inversion in the field  $\mathbb{F}_{p^k}$ , for any integer k.

The Miller lite loop  $f_{x,P}(Q)$  and full Miller loop  $f_{x,Q}(P)$  requires 48 doublings step, 4 additions step, 47 squarings in  $\mathbb{F}_{p^{15}}$  and 51 multiplications in  $\mathbb{F}_{p^{15}}$ .

Table – Cost of the Miller lite and full Miller loop.

|             | Miller lite loop             | full Miller loop            |
|-------------|------------------------------|-----------------------------|
| Aff         | $52I_1 + 3491M_1 + 2219S_1.$ | $52I_1 + 6299M_1 + 3311S_1$ |
| Proj        | $4283M_1 + 2567S_1$          | $4911M_1 + 6183S_1$         |
| Proj        | $4271M_1 + 2567S_1$          | $4803M_1 + 6183S_1$         |
| (mixed add) |                              |                             |
| Jac         | $4619M_1 + 2471S_1$          | $5319S_1 + 5739M_1$         |
| Jac         | $2471S_1 + 4607M_1$          | $5319S_1 + 5631M_1$         |
| (mixed add) |                              |                             |

Its computation have two steps:

- the full Miller loop  $f_{x,Q}(P)$
- ullet the final exponentiation which is computed as  $\left(f^{p^5-1}
  ight)^{(p^{10}+p^5+1)/r}$

the overall cost of final exponentiation is  $I_1 + 3093 M_1 + 24044 S_1$ .

• We assume that the points [x]P,  $[x^2]P$ ,  $[x^3]P$  and  $[x^4]P$  are precomputed.

- We assume that the points [x]P,  $[x^2]P$ ,  $[x^3]P$  and  $[x^4]P$  are precomputed.
- The cost of the doubling and the addition steps in the Miller's algorithm for  $f_{x,[x^{i+1}]P}(Q)$  with  $i \in \{1,2,3,4\}$  is the same with  $f_{x,P}(Q)$ .

- We assume that the points [x]P,  $[x^2]P$ ,  $[x^3]P$  and  $[x^4]P$  are precomputed.
- The cost of the doubling and the addition steps in the Miller's algorithm for  $f_{x,[x^{i+1}]P}(Q)$  with  $i \in \{1,2,3,4\}$  is the same with  $f_{x,P}(Q)$ .
- The ten Miller functions of  $\beta$  Weil pairing defined above can be computed in parallel using 10 processors.

- We assume that the points [x]P,  $[x^2]P$ ,  $[x^3]P$  and  $[x^4]P$  are precomputed.
- The cost of the doubling and the addition steps in the Miller's algorithm for  $f_{x,[x^{i+1}]P}(Q)$  with  $i \in \{1,2,3,4\}$  is the same with  $f_{x,P}(Q)$ .
- The ten Miller functions of  $\beta$  Weil pairing defined above can be computed in parallel using 10 processors.
- Each processor computes either one Miller lite loop or one full Miller loop and one  $p^i$ -frobenius maps  $(i \in \{0, 1, 2, 3, 4\})$ .

- We assume that the points [x]P,  $[x^2]P$ ,  $[x^3]P$  and  $[x^4]P$  are precomputed.
- The cost of the doubling and the addition steps in the Miller's algorithm for  $f_{x,[x^{i+1}]P}(Q)$  with  $i \in \{1,2,3,4\}$  is the same with  $f_{x,P}(Q)$ .
- The ten Miller functions of  $\beta$  Weil pairing defined above can be computed in parallel using 10 processors.
- Each processor computes either one Miller lite loop or one full Miller loop and one  $p^i$ -frobenius maps  $(i \in \{0, 1, 2, 3, 4\})$ .
- ullet The computation of the final step requires 1 inversion and 9 multiplications in  $\mathbb{F}_{p^{15}}$  .

- We assume that the points [x]P,  $[x^2]P$ ,  $[x^3]P$  and  $[x^4]P$  are precomputed.
- The cost of the doubling and the addition steps in the Miller's algorithm for  $f_{x,[x^{i+1}]P}(Q)$  with  $i \in \{1,2,3,4\}$  is the same with  $f_{x,P}(Q)$ .
- The ten Miller functions of  $\beta$  Weil pairing defined above can be computed in parallel using 10 processors.
- Each processor computes either one Miller lite loop or one full Miller loop and one  $p^i$ -frobenius maps  $(i \in \{0, 1, 2, 3, 4\})$ .
- The computation of the final step requires 1 inversion and 9 multiplications in  $\mathbb{F}_{p^{15}}$  .
- ullet The final exponentiation cost :  $1I_1+1467M_1+86S_1$



Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5 - 1)(p^3 - 1)$ .

Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5-1)(p^3-1)$ .

If we assume that  $1\mathcal{S}_1=1\mathcal{M}_1$  and  $1\mathcal{I}_1=10\mathcal{M}_1$  .

Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5 - 1)(p^3 - 1)$ .

If we assume that  $1S_1=1M_1$  and  $1I_1=10\,M_1$ .

We denote by :

MLite = the cost of the Miller lite loop

Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5 - 1)(p^3 - 1)$ .

If we assume that  $1S_1=1M_1$  and  $1I_1=10\,M_1$ . We denote by :

MLite = the cost of the Miller lite loop

FullM = the cost of full Miller loop

Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5 - 1)(p^3 - 1)$ .

If we assume that  $1S_1=1M_1$  and  $1I_1=10\,M_1$ . We denote by :

MLite = the cost of the Miller lite loop

FullM = the cost of full Miller loop

FS = the cost of the final step

Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5 - 1)(p^3 - 1)$ .

If we assume that  $1S_1=1M_1$  and  $1I_1=10\,M_1$ . We denote by :

MLite = the cost of the Miller lite loop

FullM = the cost of full Miller loop

FS = the cost of the final step

FE = the cost of the final exponentiation

Our comparision focuses only on the cost of the operations of optimal ate pairing with the cost of the operations executed by each processor to which is added the final step and the final exponentiation by  $(p^5 - 1)(p^3 - 1)$ .

If we assume that  $1S_1=1M_1$  and  $1I_1=10\,M_1$ . We denote by :

MLite = the cost of the Miller lite loop

FullM = the cost of full Miller loop

FS = the cost of the final step

FE = the cost of the final exponentiation

Frob = the cost of p-power Frobenius

Table – Cost comparision of the optimal Ate and  $\beta$  Weil pairing

|             | MLite+FS+FE+Frob           | FullM+FS+FE+Frob            | optimal Ate                 |
|-------------|----------------------------|-----------------------------|-----------------------------|
| Aff         | $7299M_1$                  | $11199M_1$                  | 33966 <i>M</i> <sub>1</sub> |
| Proj        | 7919 <i>M</i> <sub>1</sub> | 12163 <i>M</i> <sub>1</sub> | 38241 <i>M</i> <sub>1</sub> |
| Proj        | 7907 <i>M</i> <sub>1</sub> | 12055 M <sub>1</sub>        | 38133 <i>M</i> <sub>1</sub> |
| (mixed add) |                            |                             |                             |
| Jac         | $8159M_1$                  | $12127M_1$                  | 38205 <i>M</i> <sub>1</sub> |
| Jac         | $8147M_1$                  | 12019 <i>M</i> <sub>1</sub> | 38097 <i>M</i> <sub>1</sub> |
| (mixed add) |                            |                             |                             |

#### Conclusion

The optimal weil pairing has the potential speed advantage over the optimal ate pairing due to the absence of an expensive final exponentiation and suitable for parallel execution.