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Introduction
°

lonospheric irregularities and scintillations

e lonospheric irregularities are localized plasma
density structures in the ionosphere.

e Formation processes: Generalized Rayleigh-Taylor Irregularities —scintillations

instability (RTI).
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e Occurrence of scintillation may
affect the performance of satellite
communication and navigation
systems e.g, GNSS.
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Motivation

o Literature: Basu et al. [1980], Basu and Basu [1976], Basu et al. [2001], Roddy et al.
[2010], Sarkar and Gwal [2014], Nishioka et al. [2011]. Theory predicts that the effect
of irregularities on radio signals decreases quadratically with their wavelength. Then
L-band transmissions used for GNSS operations would be less affected than those at
lower VHF and UHF frequencies.

e Achievable accuracy and spatial coverage is still limited by the relatively small number
of ground-based GPS receivers over the equatorial African region.

e The Swarm satellite mission offers new opportunities for studying the subject with a
better temporal and spatial coverage.

o Alfonsi et al., 2007 recommended Swarm high resolution electron density
measurements as input to the Rino’s power law phase screen model (Rino, 1979, Rs,
14, 1135-1145) to derive S4.
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Instruments (1/3)
Swarm satellites

e Mainly a magnetic mission, but the Langmuir
Probe (LP) and on-board GPS data are also good
for irregularity studies.

e Polar orbits (Swarm A;87.4°, Swarm C;87.5°,
Swarm B;88°), so global coverage.

e Two satellites, Swarm A and C, at 440 km altitude,
decreasing....; B at 510 km.

o LP density data at 2 Hz (&3.5 km), in addition 16 Hz (= 500 m) from a “faceplate”
current (PLP with constant negative bias).

e Swarm A and C are separated by about 150 km (1.4°).
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Instruments (2/3)
Swarm faceplate N,

e The 16 Hz Ne measurements were used to identify

1.00{ Swarm A, 2014-10-06 ﬂ A 2Hz irregularity structures.

[
| o |dentifying physical processes leading to small

0.50 - H | [
/\M\J’W I}l ‘ scale-size irregularities and improve the modeling of

i the propagation of radio waves through
irregularities.
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e The Swarm 16 Hz N, estimates correspond to a
spatial resolution of about 500 m, which is within
the range of applicable Fresnel scales, and so
theoretically relevant as a cause of L-band
scintillations.
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Instruments (3/3)
GPS-SCINDA

s ¢ The GPS-SCINDA samples raw data at a frequency of 50
< : Hz

e It records the C/No intensity and phase of GPS L1 and L2
signals, as well as the azimuth and elevation of the visible
satellites.

-l e It is a real-time GPS data acquisition and ionospheric
‘\[;ﬁ analysis system which computes ionospheric parameters
\@_@)}/ amplitude scintillation (S4) and TEC using the full temporal
resolution of the receiver.

_ -2

2 , where [ represents the signal intensity.

o Amplitude scintillation, 542

e The S4 index is defined as the normalized ratio of the standard deviation of signal
intensity fluctuations to the mean signal intensity.

e S4 indices are computed by the GPS-SCINDA at 60 s intervals.
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Results (1/5)
Quantification of ionospheric irregularities

_ 120
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Z 110
o
)
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to be significantly irregular and selected 20
for additional processing and analysis. £ 100
= 00
X
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e 54 > 0.3 were considered as moderate or % L0
strong scintillation (Olwendo et al., 2012). T 20
£ 1001
3 075
e Ray path elevations > 25°were considered = 050
to reduce the multipath effects. g 025
T
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Results (2/5)
Correspondence between ionospheric irregularities and scintillations

i el B Swarm A and C ground tracks and the
0] — SwarmC - ground tracks of PRN 16, 19, 27, and 32
(aj2015-07.03 £ assuming a piercing height of 460 km.
s
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Results (3/5)
Statistical comparison of occurrence of ionospheric irregularities and
scintillations
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Seasonal distribution
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e Percentage occurrence of ionospheric
irregularities and scintillations increases e Overall, the seasonal dependence of the

between 18:00 LT and 20:00 LT and is occurrence of ionospheric irregularities
highest between 20:00 LT and 22:00 LT. A observed by Swarm is very similar to that
decrease is detected after 22:00 LT until of amplitude scintillation over Mbarara.

06:00 LT.
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Results (3/5)
Statistical comparison of occurrence of ionospheric irregularities and
scintillations

B Swarm A
B Swarm C
5071 mmm Swarm B

o For a large number of passes, amplitude
scintillations were enhanced when the LPs
also recorded density perturbations.
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o Counter examples, i.e. irregularities but no
scintillations, or vise versa, showed that
mismatches between observed irregularity

lrreg:lr?(;mes Nolrresz:(l’amles lrreg\é‘jt"“es Ncl"eg:lamles structures and scintillations can occur over

scintillation no scintillation  no scintillation scintillation occurs a few minutes and within distances Of a

few tens of kilometers.
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e The outputs of the summary plots could
be categorized into four cases considering
the presence (or not) of irregularities and
scintillation.
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Derivation of amplitude scintillation from Rino's thin phase screen model

e The 16 Hz N. data were first split into 8-s long segments.

e For each segment, a detrended electron density represented by d/N. was determined by
subtracting the mean from the instantaneous values of electron density.

e Spectral analysis was then carried out using the Fast Fourier Transform algorithm.

_ v—0. ri2.5—v)/2]
547 = (reA)*Lsec G2 ™" 5{ 2795T[(v + 0.5)/2](v — 0.5) }F @)

[Rino, 1979]:
Turbulence strength, Cs = 873/2(AN2)q2" 2T (v 4 0.5) /T (v — 0.5)
Fresnel zone parameter Z = A\Zg sec0 /4w, Zg = zzs/z + zs

Parameters:
re=28x10""%m
Irregularity layer thickness L = 200 km
Outer scale cut-off number, g, = 27/L, , Lo=L o = 175 km [e.g, Patel et al., 2011].
With phase screen at 460 km, z =460 km, z;=19,740 km
p=2v-—-1
F is the geometry-dependent Fresnel filter factor.

A is the wavelength.
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Results (4/5)

Swarm C, 2015-07-03
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Results (5/5)

e The calculated S4 for Swarm A

demonstrates good agreement between
12.0 . -
= @ the increase in the level of S4 for GPS
£ 11.51 SwarmA .
g | isores satellite of prn 16, 19, 27 and 32.
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e The S4

0 to about 0.5 for Swarm A satellite pass
on 2015-07-03.

index frequently varies from about  ® Generally, the results show a weak positive

correlation between the observed and
modeled S4 for Swarm A.

e This could be because of the “negative”
detections summarized previously.
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Conclusions

Conclusions

Measurements of N, variations by Swarm were compared with S4 at the ground
taking into account in some detail the relative positions in space and time of Swarm
and PRN piercing points.

Applying the 1-D phase screen model, we also estimated the S4 index from the hight
resolution in situ data.

For selected events, the observed irregularities along Swarm tracks could be identified
with moderate increases in S4 (54 > 0.3) at the ground.

In some cases, irregularities could not be associated with significant scintillations, or
these were seen without Swarm recording sufficient density variations.

Statistically and not surprisingly there is at satellite passes a reasonable
correspondence between in situ measured irregularities and L-band scintillations. The
distributions of irregularities and scintillations over both LT and seasons show similar
patterns.

Swarm A and C high resolution in-situ Ne data may allow the modeling of
scintillations in the L band at low latitudes. Our results may be seen as a first step to
verify this.
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