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Motivation



Abstarct



Background

Newton�s theorem(1) is in main focus of researchers. A breif description
that how the integral in (1)is approximated by di¤erent researchers is given
here:

f (x) = f (xi ) +

xZ
xi

f 0(t)dt. (1)



Background

Weerakon and Fernando[14] used trapezoidal rule to approximate the
integral in (1) and got the following two step third order scheme:

zi+1 = zi �
f (zi )
f 0(zi )

, (2)

xi+1 = xi �
2f (xi )

f 0(xi ) + f 0(zi+1)
.

The above method (2) is also called trapezoidal or arithmetic mean
Newton�s method. It is notable that scheme(2) having third order
convergence is not optimal as conjectured by Kung and Traub.



Background

If harmonic mean is used to approximate the integral in (1), we attain with
a two point third order convergent method of Ozban [11] as follows:

xi+1 = xi �
f (xi )(f 0(xi ) + f 0(zi+1))

2f 0(xi )f 0(zi+1)
, (3)

where, zi+1 = zi �
f (zi )
f 0(zi )

.

Homeier[6], also developed a third order convergent scheme as follows:

xi+1 = xi �
f (xi )
2
(
1

f 0(xi )
+

1
f 0(yi )

). (4)



Background

Iterative scheme which uses two derivative evaluation and one functional
evaluation with fourth order of convergence is known as Jarrat type
schemes [7], which is given by:

xi+1 = xi �
�
1� 2

3
f 0(yi )� f 0(xi )
3f 0(yi )� f 0(xi )

� �
f (xi )
f 0(xi )

�
, (5)

where, yi = xi �
2
3
f (xi )
f 0(xi )

.



Background

In [10], Khattari has developed the following fourth order scheme which
requires two evaluations of the derivative and one functional evaluation:

yi = xi �
2
3
f (xi )
f 0(xi )

,

xi+1 = xi �
f (xi )
f 0(xi )

"
1+

4

∑
j=1

βj

�
f 0(yi )
f 0(xi )

�j#
, where βj 2 R. (6)



Background

Chun [3], added his contribution by making another fourth order scheme
given by:

yi = xi �
4
3
f (xi )
f 0(xi )

, where zi =
xi + yi
2

,

xi+1 = xi �
f (xi )
f 0(zi )

"
1+

1
4
f 0(zi )� f 0(xi )

f 0(xi )
+
3
8

�
f 0(zi )� f 0(xi )

f 0(xi )

�2#
.(7)



Optimal fourth Order Weighted Mean Based Method

In this contribution, we suggest a new optimal fourth order Jarratt type
scheme and then provide its extension for solving the systems of nonlinear
equations. We consider two step scheme in which �rst step is same as in
Jarratt�s scheme and in second step we use weight functions to achieve
optimal convergence given as:

yi = xi � β
f (xi )
f 0(xi )

,

xi+1 = xi � [S (Fi )� T (Li )]
f (xi )
f 0 (zi )

, where zi =
xi + yi
2

, (8)

where Li = f (xi )
f 0 (xi )

, Fi = f
0
(zi )

f 0 (xi )
and T (Li ) and S (Fi ) represents real

valued weight functions chosen such that new scheme (8) achieves optimal
fourth order convergence.
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Order Of Convergence

Theorem
Let ω 2 D be a simple zero of su¢ ciently smooth function f : I � R ! R

in the neighborhood of the root in interval I . Then for β = 4
3 , the new

without memory scheme (8) achieves optimal order 4 under following
conditions on weights

S(1) = 1, S
0
(1) =

1
4
, S

00
(1) =

3
4
,

���S (3)(1)��� < +∞,(9)

T (0) = 1, T
0
(0) = T

00
(0) = 0,

���T (3)(0)��� < +∞,

and satis�es the error equation given by

ei+1 = (
7
3
c32 � c2c3 +

1
9
c4 +

32
81
S (3)(1)c32 �

1
6
T (3)(0))e4i +O(e

5
i ). (10)
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Extension of New Family for Multivariate Case

In this section we extend our new family of optimal Jarratt type scheme
for solving systems of nonlinear equations. We give a special case for our
new family given below by de�ning weight functions satisfying the
conditions of the above theorem as follows

S(Fi ) = 1+
1
4

 
f
0
(zi )

f 0 (xi )
� 1
!
+
3
8

 
f
0
(zi )

f 0 (xi )
� 1
!2
, (11)

T (Li ) = 1.

Thus, we obtain a new Jarratt type fourth order method as:

yi = xi �
4
3
f (xi )
f 0(xi )

(12)

xi+1 = xi �

240@1+ 1
4

 
f
0
(zi )

f 0 (xi )
� 1
!
+
3
8

 
f
0
(zi )

f 0 (xi )
� 1
!21A35 f (xi )

f 0 (zi )
,
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Extension of New Family for Multivariate Case

where zi =
xi+yi
2 . Now, we extend our iterative method to multivariate

case as:

X(i+1) = X(i ) � F0(Z(i ))�1F(X(i ))�[(I+ 1
4
(F (X(i ))� I) (13)

+
3
8
(F (X(i ))�I)2)],

where Y(i )(X) = X(i ) � ( 43 )[F
0
(X(i ))]�1F(X(i )),

F (X(i )) = [F
0
(X(i ))]�1F

0
(Y(i )), I is the n� n identity matrix and

F(X(i )) = (f1(x1), f2(x2), ..., fn(x2)).
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Extension of New Family for Multivariate Case

Let F : A � Rn ! Rn be su¢ ciently Fréchet di¤erentiable in a convex set
A0 � A, where A0 is an open convex neighborhood of X0 , X(i ) be
approximate root of the exact root ω and E(i ) = X(i )�ω, we can write
the ith derivative of F at h 2 Rn, h � 1,is i�linear function
F(i )(h) : R(n) �R(n) � ...�R(n) ! R(m) such that
F(i )(x(i ))hi2 Rmdescribed in [2].
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Extension of New Family for Multivariate Case

The �rst derivative involving in the Taylor�s series can be written as

[F0(x(i ))hk]T = kTS(x(i ))h (14)

and second derivative may be

[F00(x(i ))hk]T= (kTS1(x
(k )h, kTS2(x

(i )h), ...kTSm(x
(i )h)), (15)

where S1(x), ...,Sm(x) are the Hessian matrices of f1, ..., fm at x .
Therefore Taylor�s series for n�dimension case can be written as

F(X(i )) = F0(ω)
h
E(i )+C2(E

(i ))2+C3(E
(i ))3+C4(E

(i ))4
i
+O((E(i ))5)

(16)
where Ci = 1

i ! [F
0(X0)]

�1F(i )(X0), F
0(X0) is continuous and nonsingular

and X(0) is closer to ω. By using above Taylor�s expansion we may prove
the next theorem.
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Convergence Analysis

Theorem
Let A0 be a convex set containing the root ω of F(X) = 0 and
F : A � Rn ! Rn, be four-time Fréchet di¤erentiable in A0 which has the
Jacobian matrix continuous and non-singular in A. Then the new method
13 has order of convergence four satisfying the following error equation.

X(i+1)= (
7
3
c32 � c2c3 +

1
9
c4)(E

(i ))4+O(E(i ))5 (17)
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Numerical Results For Univariate Case

Saima Akram, Moin-ud-din Junjua, Nusrat Yasmin, Fiza Zafar (Institute)A Family of Optimal Fourth Order Weighted Mean Based Methods 08/16 18 / 31



Numerical Results For Univariate Case

Saima Akram, Moin-ud-din Junjua, Nusrat Yasmin, Fiza Zafar (Institute)A Family of Optimal Fourth Order Weighted Mean Based Methods 08/16 19 / 31



Numerical Results For Univariate Case

Saima Akram, Moin-ud-din Junjua, Nusrat Yasmin, Fiza Zafar (Institute)A Family of Optimal Fourth Order Weighted Mean Based Methods 08/16 20 / 31



Numerical Results For Univariate Case

Saima Akram, Moin-ud-din Junjua, Nusrat Yasmin, Fiza Zafar (Institute)A Family of Optimal Fourth Order Weighted Mean Based Methods 08/16 21 / 31



Numerical Results For Univariate Case

Saima Akram, Moin-ud-din Junjua, Nusrat Yasmin, Fiza Zafar (Institute)A Family of Optimal Fourth Order Weighted Mean Based Methods 08/16 22 / 31



Numerical Results For Univariate Case
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Numerical Results For Multivariate Case
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Numerical Results For Multivariate Case
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Numerical Results For Multivariate Case
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Conclusion
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