A Family of Optimal Fourth Order Weighted Mean Based Methods For Solving System of Nonlinear Equations

Saima Akram

CASPAM, Bahauddin Zakariya University Multan, Pakistan

August 2014

Outline

- Motivation
- Objectives
- Definition
- Background
- Abstract
- Tools
- Optimal Fourth Order Weighted Mean Based Jarrat Type Iterative Method Optimal Fourth Order Weighted Mean Based Jarrat Type Iterative Method
- Convergence Analysis, Comparisons and conclusion
- Extension Of Optimal Fourth Order Weighted Mean Based Jarrat Type Iterative Method For System Of Nonlinear Equations
- Convergence Analysis, Comparisons and conclusion

Motivation

Past Iterative Schemes

Our Iterative Schemes

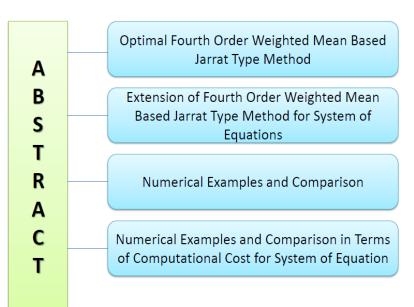
Non-Optimal Schemes

Schemes for Single Equations Optimal Jarrat Type Schemes

Schemes for System of Equations

More Efficient Schemes

Abstarct



Background

Newton's Theorem

Newton's theorem(1) is in main focus of researchers. A breif description that how the integral in (1) is approximated by different researchers is given here:

$$f(x) = f(x_i) + \int_{x_i}^{x} f'(t) dt.$$
 (1)

Method of Weerakon and Fernando

We erak on and Fernando [14] used $trapezoidal\ rule$ to approximate the integral in (1) and got the following two step third order scheme:

$$z_{i+1} = z_i - \frac{f(z_i)}{f'(z_i)},$$

$$x_{i+1} = x_i - \frac{2f(x_i)}{f'(x_i) + f'(z_{i+1})}.$$
(2)

The above method (2) is also called trapezoidal or arithmetic mean Newton's method. It is notable that scheme(2) having third order convergence is not optimal as conjectured by Kung and Traub.

Method of Ozban and Homeier

If $harmonic\ mean$ is used to approximate the integral in (1), we attain with a two point third order convergent method of Ozban [11] as follows:

$$x_{i+1} = x_i - \frac{f(x_i)(f'(x_i) + f'(z_{i+1}))}{2f'(x_i)f'(z_{i+1})},$$
 (3)
where, $z_{i+1} = z_i - \frac{f(z_i)}{f'(z_i)}.$

Homeier[6], also developed a third order convergent scheme as follows:

$$x_{i+1} = x_i - \frac{f(x_i)}{2} \left(\frac{1}{f'(x_i)} + \frac{1}{f'(y_i)} \right). \tag{4}$$

Jarrat Type Methods

Iterative scheme which uses *two derivative evaluation* and *one functional evaluation* with *fourth* order of convergence is known as *Jarrat type schemes* [7], which is given by:

$$x_{i+1} = x_i - \left[1 - \frac{2}{3} \frac{f'(y_i) - f'(x_i)}{3f'(y_i) - f'(x_i)}\right] \left[\frac{f(x_i)}{f'(x_i)}\right],$$
 (5)
where, $y_i = x_i - \frac{2}{3} \frac{f(x_i)}{f'(x_i)}$.

Khattri's Jarrat Type Method

In [10], Khattari has developed the following fourth order scheme which requires two evaluations of the derivative and one functional evaluation:

$$y_{i} = x_{i} - \frac{2}{3} \frac{f(x_{i})}{f'(x_{i})},$$

$$x_{i+1} = x_{i} - \frac{f(x_{i})}{f'(x_{i})} \left[1 + \sum_{j=1}^{4} \beta_{j} \left(\frac{f'(y_{i})}{f'(x_{i})} \right)^{j} \right], \text{ where } \beta_{j} \in R. \quad (6)$$

Chun's Jarrat Type Method

Chun [3], added his contribution by making another fourth order scheme given by:

$$y_{i} = x_{i} - \frac{4}{3} \frac{f(x_{i})}{f'(x_{i})}, \text{ where } z_{i} = \frac{x_{i} + y_{i}}{2},$$

$$x_{i+1} = x_{i} - \frac{f(x_{i})}{f'(z_{i})} \left[1 + \frac{1}{4} \frac{f'(z_{i}) - f'(x_{i})}{f'(x_{i})} + \frac{3}{8} \left(\frac{f'(z_{i}) - f'(x_{i})}{f'(x_{i})} \right)^{2} \right] (7)$$

Optimal fourth Order Weighted Mean Based Method

In this contribution, we suggest a new optimal fourth order Jarratt type scheme and then provide its extension for solving the systems of nonlinear equations. We consider two step scheme in which first step is same as in Jarratt's scheme and in second step we use weight functions to achieve optimal convergence given as:

$$y_{i} = x_{i} - \beta \frac{f(x_{i})}{f'(x_{i})},$$

$$x_{i+1} = x_{i} - [S(\mathcal{F}_{i}) \times T(\mathcal{L}_{i})] \frac{f(x_{i})}{f'(z_{i})}, \text{ where } z_{i} = \frac{x_{i} + y_{i}}{2}, \quad (8)$$

where $\mathcal{L}_i = \frac{f(x_i)}{f'(x_i)}$, $\mathcal{F}_i = \frac{f'(z_i)}{f'(x_i)}$ and $T(\mathcal{L}_i)$ and $S(\mathcal{F}_i)$ represents real valued weight functions chosen such that new scheme (8) achieves optimal fourth order convergence.

Order Of Convergence

Theorem

Let $\omega \in D$ be a simple zero of sufficiently smooth function $f:I\subseteq \mathbb{R} \to \mathbb{R}$ in the neighborhood of the root in interval I. Then for $\beta=\frac{4}{3}$, the new without memory scheme (8) achieves optimal order 4 under following conditions on weights

$$S(1) = 1,$$
 $S'(1) = \frac{1}{4},$ $S''(1) = \frac{3}{4},$ $\left| S^{(3)}(1) \right| < +\infty,(9)$ $T(0) = 1,$ $T'(0) = T''(0) = 0,$ $\left| T^{(3)}(0) \right| < +\infty,$

and satisfies the error equation given by

$$e_{i+1} = (\frac{7}{3}c_2^3 - c_2c_3 + \frac{1}{9}c_4 + \frac{32}{81}S^{(3)}(1)c_2^3 - \frac{1}{6}T^{(3)}(0))e_i^4 + O(e_i^5).$$
 (10)

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

In this section we extend our new family of optimal Jarratt type scheme for solving systems of nonlinear equations. We give a special case for our new family given below by defining weight functions satisfying the conditions of the above theorem as follows

$$S(\mathcal{F}_{i}) = 1 + \frac{1}{4} \left(\frac{f'(z_{i})}{f'(x_{i})} - 1 \right) + \frac{3}{8} \left(\frac{f'(z_{i})}{f'(x_{i})} - 1 \right)^{2}, \quad (11)$$

$$T(\mathcal{L}_{i}) = 1.$$

Thus, we obtain a new Jarratt type fourth order method as:

$$y_i = x_i - \frac{4}{3} \frac{f(x_i)}{f'(x_i)}$$
 (12)

$$x_{i+1} = x_i - \left\lceil \left(1 + \frac{1}{4} \left(\frac{f^{'}(z_i)}{f^{'}(x_i)} - 1\right) + \frac{3}{8} \left(\frac{f^{'}(z_i)}{f^{'}(x_i)} - 1\right)^2\right) \right\rceil \frac{f(x_i)}{f^{'}(z_i)},$$

Saima Akram, Moin-ud-din Junjua, Nusrat Y& Family of Optimal Fourth Order Weighted 08/16 13 / 31

where $z_i = \frac{x_i + y_i}{2}$. Now, we extend our iterative method to multivariate case as:

$$\mathbf{X}^{(i+1)} = \mathbf{X}^{(i)} - \mathbf{F}'(\mathbf{Z}^{(i)})^{-1} \mathbf{F}(\mathbf{X}^{(i)}) \times [(\mathbf{I} + \frac{1}{4}(\mathcal{F}(\mathbf{X}^{(i)}) - \mathbf{I}) + \frac{3}{8}(\mathcal{F}(\mathbf{X}^{(i)}) - \mathbf{I})^{2})],$$
(13)

where
$$\mathbf{Y}^{(i)}(\mathbf{X}) = \mathbf{X}^{(i)} - (\frac{4}{3})[\mathbf{F}^{'}(\mathbf{X}^{(i)})]^{-1}\mathbf{F}(\mathbf{X}^{(i)}),$$

$$\mathcal{F}(\mathbf{X}^{(i)}) = [\mathbf{F}^{'}(\mathbf{X}^{(i)})]^{-1}\mathbf{F}^{'}(\mathbf{Y}^{(i)}), \mathbf{I} \text{ is the } \mathbf{n} \times \mathbf{n} \text{ identity matrix and } \mathbf{F}(\mathbf{X}^{(i)}) = (f_1(x_1), f_2(x_2), ..., f_n(x_2)).$$

Let $\mathbf{F}: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be sufficiently Fréchet differentiable in a convex set $A_0 \subset A$, where A_0 is an open convex neighborhood of \mathbf{X}_0 , $\mathbf{X}^{(i)}$ be approximate root of the exact root ω and $\mathbf{E}^{(i)} = \mathbf{X}^{(i)} - \omega$, we can write the ith derivative of \mathbf{F} at $\mathbf{h} \in \mathbb{R}^n$, $\mathbf{h} \geq 1$, is i-linear function $\mathbf{F}^{(i)}(\mathbf{h}): \mathbb{R}^{(n)} \times \mathbb{R}^{(n)} \times \dots \times \mathbb{R}^{(n)} \to \mathbb{R}^{(m)}$ such that $\mathbf{F}^{(i)}(\mathbf{x}^{(i)})\mathbf{h}i \in \mathbb{R}^m$ described in [2].

The first derivative involving in the Taylor's series can be written as

$$[\mathbf{F}'(\mathbf{x}^{(i)})\mathbf{h}\mathbf{k}]^T = \mathbf{k}^T \mathbf{S}(\mathbf{x}^{(i)})\mathbf{h}$$
(14)

and second derivative may be

$$[\mathbf{F}''(\mathbf{x}^{(i)})\mathbf{h}\mathbf{k}]^T = (\mathbf{k}^T \mathbf{S}_1(\mathbf{x}^{(k)}\mathbf{h}, \mathbf{k}^T \mathbf{S}_2(\mathbf{x}^{(i)}\mathbf{h}), ... \mathbf{k}^T \mathbf{S}_m(\mathbf{x}^{(i)}\mathbf{h})), \qquad (15)$$

where $S_1(\mathbf{x}),...,S_m(\mathbf{x})$ are the Hessian matrices of $f_1,...,f_m$ at x. Therefore Taylor's series for n-dimension case can be written as

$$\mathbf{F}(\mathbf{X}^{(i)}) = \mathbf{F}'(\boldsymbol{\omega}) \left[\mathbf{E}^{(i)} + \mathbf{C}_2(\mathbf{E}^{(i)})^2 + \mathbf{C}_3(\mathbf{E}^{(i)})^3 + \mathbf{C}_4(\mathbf{E}^{(i)})^4 \right] + O((\mathbf{E}^{(i)})^5)$$
(16)

where $\mathbf{C}_i = \frac{1}{i!} [\mathbf{F}'(\mathbf{X}_0)]^{-1} \mathbf{F}^{(i)}(\mathbf{X}_0)$, $\mathbf{F}'(\mathbf{X}_0)$ is continuous and nonsingular and $\mathbf{X}^{(0)}$ is closer to ω . By using above Taylor's expansion we may prove the next theorem.

Convergence Analysis

Theorem

Let A_0 be a convex set containing the root ω of $\mathbf{F}(\mathbf{X}) = \mathbf{0}$ and $\mathbf{F}: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$, be four-time Fréchet differentiable in A_0 which has the Jacobian matrix continuous and non-singular in A. Then the new method 13 has order of convergence four satisfying the following error equation.

$$\mathbf{X}^{(i+1)} = (\frac{7}{3}c_2^3 - c_2c_3 + \frac{1}{9}c_4)(\mathbf{E}^{(i)})^4 + O(\mathbf{E}^{(i)})^5$$
 (17)

Table 1: Test Functions and Their Roots

Numerical Example	Exact Zero
$f_1(x) = \sin 3x + x \cos x$	$\omega = 0.000000000000000$
$f_2(x) = x + \cos x^2 - \frac{1}{2}$	ω = -0.4747149936699329
$f_3(x) = (x+2)e^x - 1$	$\omega = -0.4428544010023885$
$f_4(x) = \sin^{-1}(x^2 - 1) - \frac{1}{2}x + 1$	ω = 0.5948109683983691
$f_5(x) = x^2 e^x - \sin x$	ω=0.0000000000000000

Table 2: Comparison of Various Iterative Methods for $f_1(x)$

	Table 2. Comparison of Various Relative Medicas for					
$f_1(x) \\ x_0 = 0.4$	NM	KM	СМ	SM	SMNF1	
n	9	D	D	D	7	
$ x_1 - \omega $	3.02 10 -1	2.56 10	7.05 10 -1	6.07 10 -1	3.80 10 -1	
$ f_1(x_1) $	1.075 10	1.16 10	1.39 10	1.46 10	1.26 10	
$ x_2-\omega $	9.4 10 -2	3.0 10	2.10 10	35854.07 10	1.43 10 -3	
$ f_1(x_2) $	3.72 10 -1	2.64 10	1.03 10	21526.38 10	5.69 10 -3	
$ x_3-\omega $	2.13 10	2.11 10	95.83 10 ⁰	35853.13	4.12 10 -12	
$ f_1(x_3) $	8.54 10	1.03 10	2.23 10	10417.75 10	1.64 10 ⁻¹¹	
$ x_4-\omega $	2.43 10 -8	883.95 10 ⁰	95.80 10 ⁰	35853.41 10 ⁰	2.88 10 ⁻⁴⁶	
$ f_1(x_4) $	9.74 10 -8	344.38 10 ⁰	8.81 10 -8	290.79 10	1.15 10 ⁻⁴⁵	
$ x_5-\omega $	3.61 10 -23	884.35 10	95.80 10 ⁰	35853.42 10 °	6.91 10 ⁻¹⁸³	
$ f_1(x_5) $	1.44 10 -22	1.11 10	3.90 10 -157	1.55 10 -4	2.76 10 -182	
$ x_6 - \omega $	1.17 10 -67	884.35 10 ⁰	95.80 10 °	35853.42 10 ⁰	2.28 10 ⁻⁷²⁹	
$ f_1(x_6) $	4.71 10 -67	5.21 10 -13	4.56 10 -635	1.25 10 -29	9.15 10 ⁻⁷²⁹	

Table 3: Comparison of Various Iterative Methods for $f_2(x)$

$f_2(x)$ $x_0 = -0.3$	NM	KM	CM	SM	SMNF1
n	10	5	5	6	5
$ x_1 - \omega $	1.12 10 -2	3.64 10 -3	8.67 10 ⁻⁵	1.13 10 -3	1.43 10 -4
$ f_2(x_1) $	1.36 10 -2	4.41 10	1.05 10 -4	1.37 10 -3	1.28 10 -3
$ x_2 - \omega $	6.99 10 -5	2.06 10 -14	2.53 10 -17	2.0 10 -12	1.26 10 -12
$ f_2(x_2) $	8.47 10 ⁻⁵	2.5 10 -14	3.07 10 ⁻¹⁷	2.43 10 -12	1.52 10
$ x_3 - \omega $	2.67 10 -9	2.12 10	1.84 10	1.98 10	2.55 10
$ f_2(x_3) $	3.24 10 -9	2.58 10 -55	2.23 10 -67	2.40 10 -47	3.09 10 -48
$ x_4 - \omega $	3.91 10 -18	2.41 10 -219	5.20 10 -268	1.91 10 -187	4.30 10 -191
$ f_2(x_4) $	4.74 10 -18	2.92 10 -219	6.31 10 -268	2.32 10 -187	5.21 10 -191
$x_5 - \omega$	8.36 10		0	1.65 10 -747	0
$ f_2(x_5) $	1.01 10	4.82 10 -875	0	2.00 10 -747	0
$ x_6 - \omega $		0	0	0	0
$ f_2(x_6) $	4.63 10 -71	0	0	0	0

Table 4: Comparison of Various Iterative Methods for $f_3(x)$

$f_3(x)$	NM	KM	СМ	SM	SMNF1
$x_0 = -0.47$	1111	IL.VI	CM	5.14	SWINT
n	9	5	5	5	5
$ x_1 - \omega $	5.20 10 -4	1.78 10 -6	8.70 10 -7	2.47 10 -8	2.39 10 -7
$ f_3(x_1) $	8.54 10 -4	2.93 10 -6	1.4310 -6	4.06 10 -8	3.93 10 -7
$ x_2 - \omega $	1.88 10 -7	3.03 10 -23	8.54 10 -25	1.39 10 -32	1.35 10 -27
$ f_3(x_2) $		4.99 10 -23	1.40 10 -24	2.29 10 -32	2.22 10 -27
$ x_3-\omega $	2.46 10 -14	$2.54\ 10^{-90}$	7.92 10 -97	1.41 10 -129	1.39 10 -108
$ f_3(x_3) $	4.04 10 -14	4.17 10 -90	1.30 10 -96	2.31 10 -129	2.28 10 -108
$ x_4 - \omega $	4.21 10 -28	1.24 10 -358	5.85 10 ⁻³⁸⁵	1.47 10 -517	1.55 10 -432
$ f_3(x_4) $	6.91 10 -28	2.04 10 -358	9.61 10 ⁻³⁸⁵	2.42 10 -517	2.54 10 -432
$ x_5-\omega $	1.23 10 -55	0	0	0	0
$ f_3(x_5) $	2.02 10 -55	0	0	0	0
$ x_6 - \omega $	1.05 10 -110	0	0	0	0
$ f_3(x_6) $	1.73 10 -110	0	0	0	0

Table 5: Comparison of Various Iterative Methods for $f_4(x)$

$f_4(x)$	NM	KM	СМ	SM	SMNF1
X ₀ =0.8	10	7	5	6	6
$ x_1 - \omega $	1.45 10-2	1.04 10 -2	1.79 10-4	1.41 10 ⁻³	1.41 10 ⁻³
$ f_4(x_1) $	1.54 10 -2	1.10 10 -2	1.89 10 ⁻⁴	1.49 10 ⁻³	1.49 10 ⁻³
$ x_2-\omega $	5.67 10 ⁻⁵	1.58 10 -9	4.86 10 ⁻¹⁷	3.92 10 ⁻¹²	3.92 10 ⁻¹²
$ f_4(x_2) $	6.01 10 ⁻⁵	1.67 10 -9	5.14 10 ⁻¹⁷	4.15 10 ⁻¹²	4.15 10 ⁻¹²
$ x_3 - \omega $	8.54 10 ⁻¹⁰	8.28 10 -37	2.63 10 ⁻⁶⁷	2.37 10 ⁻⁴⁶	2.37 10 ⁻⁴⁶
$ f_4(x_3) $	9.04 10 ⁻¹⁰	8.77 10 -37	2.78 10 ⁻⁶⁷	2.51 10 ⁻⁴⁶	2.51 10 ⁻⁴⁶
$ x_4 - \omega $	1.94 10 ⁻¹⁹	6.16 10 -146	2.25 10 ⁻²⁶⁸	3.17 10 ⁻¹⁸³	3.17 10 ⁻¹⁸³
$ f_4(x_4) $	2.06 10 ⁻¹⁹	6.52 10 -146	2.39 10 ⁻²⁶⁸	3.35 10 ⁻¹⁸³	3.35 10 ⁻¹⁸³
$ x_5-\omega $	1.00 10 ⁻³⁸	0.41 10 ⁻⁵⁰⁰	0	1.01 10 ⁻⁷³⁰	1.01 10 ⁻⁷³⁰
$ f_4(x_5) $	1.06 10 ⁻³⁸	2.00 10 -582	0	1.07 10 ⁻⁷³⁰	1.07 10 ⁻⁷³⁰
$ x_6 - \omega $	2.67 10 ⁻⁷⁷	4.14 10 ⁻⁵⁰⁰	0	0	0
$ f_4(x_6) $	2.83 10 ⁻⁷⁷	0	0	0	0

Table 6: Comparison of Various Iterative Methods for $f_5(x)$

$f_5(x)$	NM	KM	СМ	SM	SMNF1
$x_0 = 0.22$			0.11		
n	10	D	D	8	6
$ x_1 - \omega $	2.09 10 -1	8.46 10 ⁰	1.57 10	6.11 10	2.49 10
$ f_5(x_1) $	2.44 10 -1	8.36 10 -1	1.51 10	7.77 10 -1	2.95 10 -1
$x_2 - \omega$	1.96 10 -2	11.00 10	1.24 10	1.41 10	4.70 10 -3
$ f_5(x_2) $	1.99 10 -2	9.97 10 -1	D		4.70 10 -3
$ x_3 - \omega $	3.53 10 -4	1.12 10 9	D	7.90 10 -4	2.14 10 -9
$ f_5(x_3) $	3.53 10 -4	9.96 10 ⁻¹	D	7.91 10 ⁻⁴	2.14 10 -11
$x_4 - \omega$	1.25 10 -7	1.12 10 9	D		9.6 10 ⁻³⁵
$ f_5(x_4) $	1.25 10 -7	1.70 10	D	2.28 10 -12	9.6 10 -35
$ x_5 - \omega $	1.56 10 -14	1.12 10 9	D	1.59 10 -46	3.89 0 ⁻¹³⁶
$ f_5(x_5) $	1.56 10	9.4 10 ⁻⁶	D	1.59 10 -46	3.89 10 -136
$ x_6 - \omega $	2.44 10 -28	1.12 10 9	D	3.82 10 -183	9.72 10 ⁻²⁶⁶
$ f_5(x_6) $	2.44 10 -28	3.91 10 -27	D	3.82 10 -183	9.72 10 ⁻²⁶⁶

^{*}D stands for divergen

Table 7: Test Functions With Their Exact Roots and Initial Guesses

	Numerical Example	Exact	Zero	Starting vector	
1	$f = x - y - 19$ $g = \frac{y^3}{6} - x^2 - 17$	W =	[5.000000] [6.000000]	X ⁽⁰⁾ =	[5.1] [6.1]
Example 2	$f = \cos y - \sin x$		0.909569	(0)	[1.0]
	$g = z^x - \frac{1}{z}$	W =	0.661227 1.575834	$\mathbf{X}^{(0)} =$	0.5
	$g = z^{x} - \frac{1}{y}$ $h = e^{x} - z^{2}$	**	1.575834	$X^{(0)} =$	1.5
	$h = e^{x} - z^{2}$		1.575834		
Example 3	f = xy + z(x+y)		0.577350		0.5
	g = wy + z(w + y)		0.5577350	* z(0)	0.5
	h = wx + z(w+x)	w =	0.5577350 0.577350	$X^{(0)} =$	0.5
	i = wx + wy + xy - 1		_ 0.288675		$\begin{bmatrix} -0.2 \end{bmatrix}$

Table 8: Comparison of Various Iterative Methods for Solving System of Nonlinear Equations

Numerical Example		NM	KM	BM	SMNF2
	Iterations	7	5	4	4
Example 1	$\left\ \mathbf{X}^{(k)}-\mathbf{X}^{(k-1)}\right\ _{\infty}$	4.98 10 ⁻¹¹⁵	1.18 10 ⁻³⁷⁶	2.59 10 ⁻¹⁰³	7.10 10 ⁻¹⁰⁸
	$\left\ \mathbf{F}(\mathbf{X}^{(k-1)}) \right\ _{\infty}$	3.31 10 ⁻¹¹⁵	2.13 10 ⁻³⁷⁵	4.64 10 ⁻¹⁰²	1.27 10 ⁻¹⁰⁶
	Iterations	9	6	6	6
Example 2	$\left\ \mathbf{X}^{(k)}-\mathbf{X}^{(k-1)}\right\ _{\infty}$	6.42 10 ⁻¹⁰⁸	2.76 10 ⁻²¹⁰	1.00 10 ⁻²⁹⁹	1.18 10 -356
	$\left\ \mathbf{F}(\mathbf{X}^{(k-1)}) \right\ _{\infty}$	6.46 10 ⁻¹⁰⁸	2.79 10 ⁻²¹⁰	1.02 10 ⁻²⁹⁹	1.23 10 ⁻³⁵⁶
	Iterations	8	5	5	5
Example 3	$\left\ \mathbf{X}^{(k)}-\mathbf{X}^{(k-1)}\right\ _{\infty}$	4.40 10 ⁻¹⁴⁵	1.30 10 ⁻¹⁹⁸	3.49 10 ⁻²³⁸	1.02 10 ⁻²⁵⁶
	$\left\ \mathbf{F}(\mathbf{X}^{(k-1)}) \right\ _{\infty}$	4.51 10 ⁻¹⁴⁵	1.30 10 ⁻¹⁹⁸	4.02 10 ⁻²³⁸	1.02 10 ⁻²⁵⁶

Table 9: Comparison of Computational Cost of Various Iterative Methods for Solving Systems

Methods	Convergence Order	Number of Functional Evaluations	Total Cost of Method
ВМ	4	$2n^2 + n$	$\frac{13}{3}n^3 + 12n^2 + 4n$
KM	4	$2n^2 + n$	$\frac{17}{3}n^3 + 7n^2 + 6n$
CM	4	$2n^2 + n$	$\frac{11}{3}n^3 + 10n^2 + 4n$
SMNF2	4	$2n^2 + n$	$\frac{13}{3}n^3 + 12n^2 + 4n$

Conclusion

CONCLUSION

The Method has Optimal Fourth
Order Convergent

Comparable With All Univariate
Fourth Order Methods of This
Domain

Comparable With All Multivariate Fourth Order Methods of This Domain in Terms of Computational Cost given in Table 9

References I

- D. K. R. Babajee, A. Codero, F. Soleymani, J. R. Torregrosa, *On a novel fourth-order algorithm for solving systems of nonlinear equations*, Journal of Applied Mathematics, (2012), doi:10.1155/2012/165452
- A. Cordero, J. L. Hueso, E. Martimez, and J. R. Torregrosa, *A modified Newton-Jarratt's composition*, Numerical Algorithms, vol. 55, no. 1, pp., (2010), 87–99.
- C. Chun, Some fourth-order iterative methods for solving nonlinear equations, Appl. Math. Comput. **195** (2008), 454-459.
- M. Frontini, E. Sormani, Some variant of Newton's method with third order convergence, Appl. Math. Comput. 140 (2003), 419-426.
- M. Frontini and E. Sormani, *Third-order methods from quadrature formulae for solving systems of nonlinear equations*, Applied Mathematics and Computation, vol. 149, no. 3, (2004), 771–782.

References II

- H.H.H. Homeier, *On Newton-type methods with cubic convergence*, J. Comput. Appl. Math. **176** (2005), 425–432.
- P. Jarratt, Some fourth order multipoint iterative methods for solving equations, Math. Comp. **20** (1966), 434–437.
- C.T. Kelley, Solving nonlinear equations with Newton's method, SIAM, Philadelphia, P A, 2003.
- M. Q. Khirallah, M.A. Hafiz, Solving system of nonlinear equations using family of jarratt methods, International Journal of Differential Equations and Applications, vol 12 no. 2 (2013), 69-83.
- S. K. Khattri, S. Abbasbandy, *Optimal fourth order family of iterative methods*, Matemat **63**, 1 (2011), 67-72.
- A.Y.Özbzn, Some variants of Newton's method, Appl. Math. Lett. 17 (2004), 677-682.

References III

- F. Soleymani, S.K. Khattri, S. Karimi Vanani, *Two new Classes of Optimal Jarratt-type fourth-order methods*, Appl. Math. Lett. **25** (2012), 847-853.
- J.F. Traub, *Iterative Methods for the solution of equations*, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- S. Weerakoon, T.G.I. Fernando, *A variant of Newton's method with accerated third-order convergence*, Applied Mathematics Letters **13** (8) (2000), 87–93.

SPECIAL THANKS TO

Organizing Committee ICM 2014

AUDIENCE

All RESPECTED RESEARCHERS