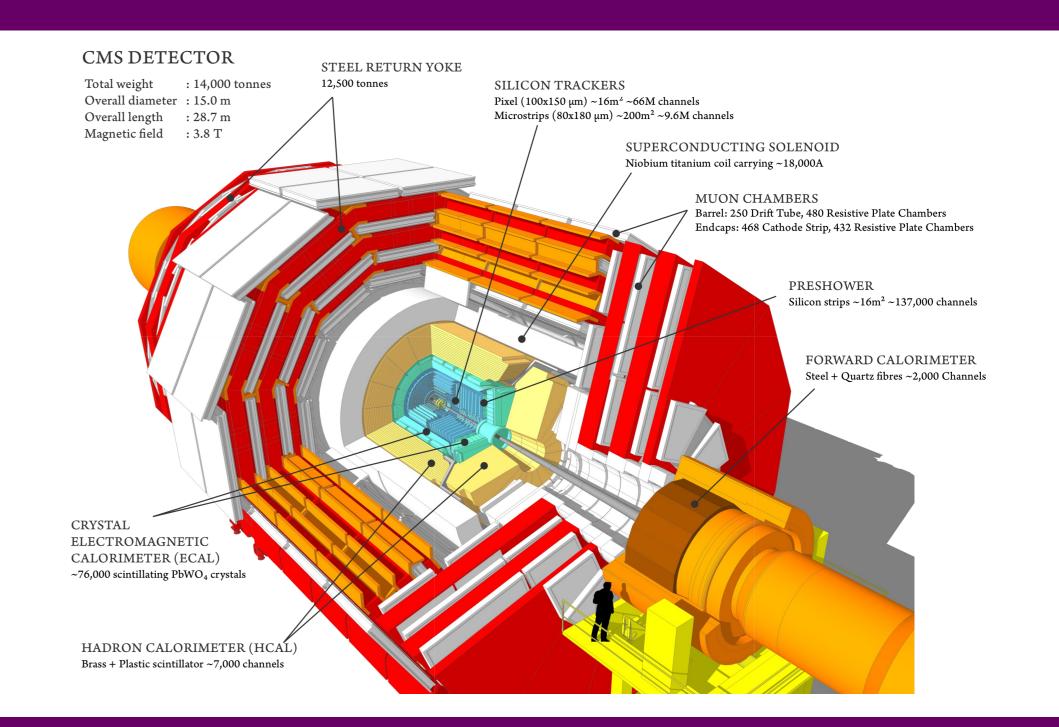


Searches for the Higgs boson in ## plus photon decay channels using the CMS detector

Luisa Fernanda Chaparro Sierra*

On behalf of CMS Experiment.

Abstract


The results of the Higgs boson decays into a dilepton plus a photon are presented. The analyses are performed proton-proton collision data recorded by the CMS detector at the LHC. The events were collected at 8 TeV and 13 TeV center-of-mass energy.

Searches for the rare decay of a 125 GeV scalar boson into a Z boson and a photon have been conducted by ATLAS and CMS experiments. In these analyzes the Z bosons are reconstructed from opposite sign lepton pairs (electron or muon) $H \rightarrow ll \gamma$.

- Due to the recent report from CMS and ATLAS about a modes excess around 750 GeV in the diphoton mass spectrum, the most recent search looks for high-mass resonances $(\mathbf{A} \rightarrow \mathbf{Z} \gamma \rightarrow \mathbf{l} \mathbf{l} \gamma)$ (EXO-16-021).
- Looking at the low region in the dilepton invariant mass spectrum, the search of $H \rightarrow \gamma \gamma^* \rightarrow \gamma ll$ is performed. This process is called Higgs Dalitz decay (HIG-14-003)

CMS EXPERIMENT

- The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T.
- Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. They provide measurements of the energy of photons, electrons and jets.
- Muons are detected in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid.
- Extensive forward calorimeter complements the coverage provided by the barrel and endcap detectors

HIGH-MASS RESONANCES

(EXO-16-021) ATLAS and CMS reported a modest excess of data over the expected background around 750 GeV in the diphoton mass spectrum. If this excess is confirmed to be due to a new physics process, the $Z\gamma$ channel may be needed to characterized it. The analysis search for a high mass spin-0 resonance, A, with mass between 200 GeV and 2 TeV, decaying to $Z \gamma$. A $\longrightarrow Z \gamma$ $\longrightarrow 11 \gamma$

EVENT SELECTION

• At least one primary vertex.

◆ Mll > 50 GeV

- ◆ Two opposite-sign, same flavour leptons plus a pho-
- ◆ Leading leptons pT > 20 (25) GeV for 8 (13) TeV.
- Isolation in all particles. ◆ Photon pT > 40 GeV.
- $\Delta R(1,\gamma) > 0.4$ to reject FSR events.
- ◆ Subleading leptons pT > 10 (20) GeV for 8 (13) TeV.

SIGNAL MODELLING

- Scalar resonances decaying to $Z\gamma$ were generated with
- Samples with masses between 200 (350) GeV to 1.2 (2.0) TeV for 8 (13) TeV for signal were generated.
- The fitting function is a Gaussian plus a Crystall ball function for 8 TeV and a function with a Gaussian core and two -power law tails an extended form of the Crystal ball for 13

bias is studied by using different pseudo-data from different

The 13 TeV search employees a fitting strategy similar to the

8 TeV search. The adopted fitting function in the background

functional forms and tilled with the function under test.

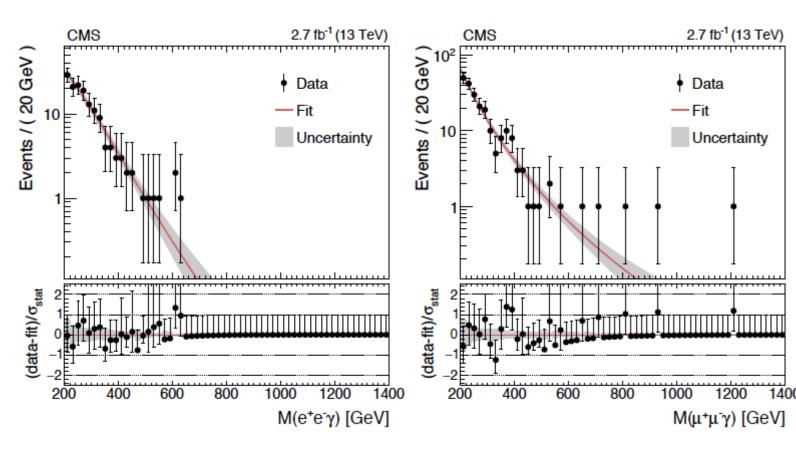
DALITZ DECAY

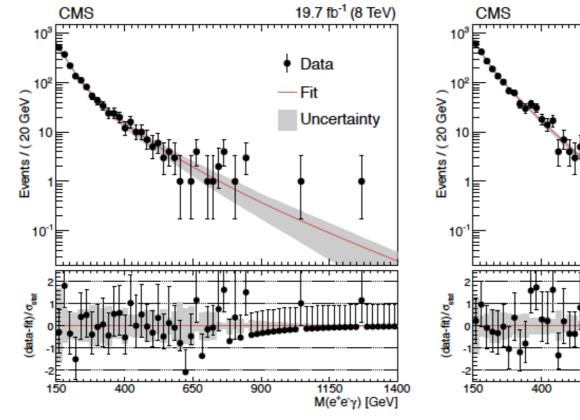
(HIG-14-003) Higgs boson decay into μμγ final state, although rare, provides interesting information on the properties of the SM Higgs boson:

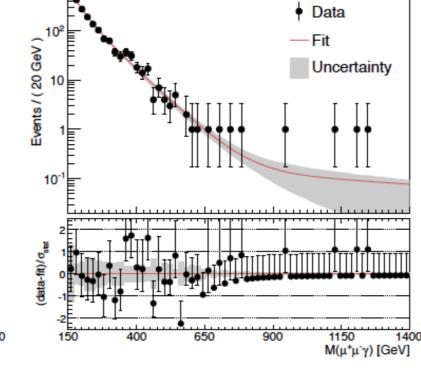
(a) it gives an extra handle on the measurement of Higgs' couplings;

(b) it consists of non-trivial angular correlations that could result in forward-backward asymmetry; (c) sensitive to new-physics via loops.

The dominant contribution to the final state come from $H \rightarrow \gamma^* \gamma$ and $H \rightarrow Z^* \gamma$ processes, with an internal conversion of the γ */Z* into a dilepton.


The main contributions to this channel are loop-induced processes, but tree-level diagrams with initial-state and final-state radiation, also contribute. Other high-order box diagrams have negligible contributions.


Based on simulated events, the dominant background after the full selection is ISR SM Z γ productions (80-90%). The rest is due to the contribution from Z+jets.

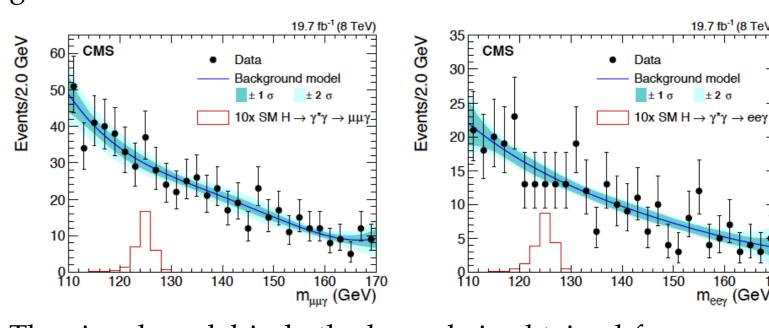

The mll distributions are steeply and smoothly falling with increasing mass.

At 8 TeV the background shape is parametrized with the sum of three exponential decay functions. The exponential

estimate: $f(m_{Z\gamma}) = m_{7\sim}^{a+b\log m_{Z\gamma}}$

19.7 fb⁻¹ (8 TeV)

EVENT SELECTION

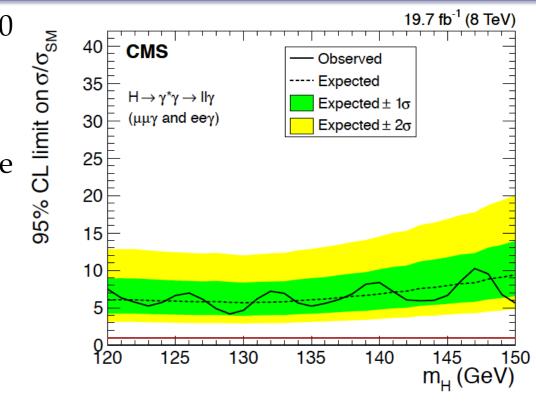

For this analysis the events were required to pass a:

- ♦ Two opposite-sign, same flavour and a photon.
- \bullet For muon, the pseudorapidity (η) is less than 2.4, while for the photon and electrons, $|\eta| < 1.44$.
- ♦ All particles must be isolated.
- ♦ Transverse momentum: greater than 23 GeV for the highest-pT lepton and greater than 4 GeV for next to the highest-pT lepton.
- ♦ The dilepton invariant mass (m₁₁) is required to be less than 20 GeV in order to reject contributions from pp $\rightarrow \gamma$ Z and $H \rightarrow \gamma Z$.
- ◆ Events with dilepton mass between 2.9 GeV and 3.3 GeV as well as events with dilepton mass between 9.3 and 9.7 GeV are rejected to avoid J/Ψ and Y contributions respectively.
- The mass window for the system $ll \gamma$, is require to be between 110 and 170 GeV.

observed limits between 5 and 11 times the SM.

SIGNAL & BACKGROUND MODELING

The background model is modeled by fitting a polynomial function to the $ll \gamma$ mass distribution in data. The fitting is unbinned and is performed over the three body invariant mass range of 110-170 GeV. This spectrum is a falling distribution that is fitted to a fourth-order polynomial. The potential bias on the background measurement is studied by using pseudo-data generated from background-only fits to the observed three-body mass spectrum. These pseudo-data sets are fitted to a signal combined with a polynomial background model.

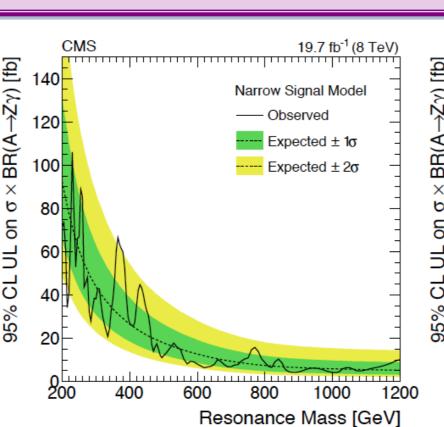


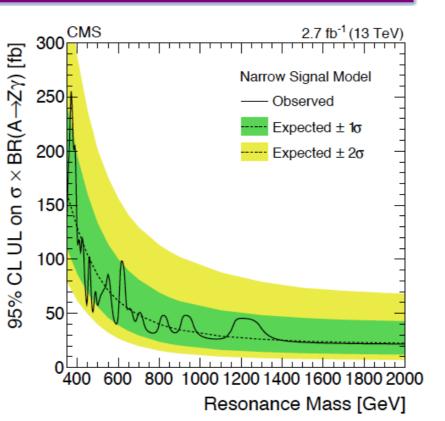
The signal model in both channels is obtained from an unbinned fit to the mass distribution of the corresponding simple of simulated events to a Crystal Ball function plus a Gaussian function.

RESULTS

No significant excess above background is observed in the full mass range (120 <mH <150) with a maximum excess of less tan 2 sigma.

The expected and observed combined $\mu\mu\gamma$ and ee γ limits are show in the right. The 95% CL exclusion limits are between 6 and 10 times the SM prediction and the


Acknowledgements:


We would like to extend our sincere thanks to the CMS Collaboration, particularly the Higgs to Z Gamma Group, Professor Mayda Velasco's group at NorthWestern University, The LPC Physics Center at Fermilab, Colciencias and Science Faculty at Universidad de Los Andes, Colombia.

RESULTS

No significant excess is observed with respect to the background predictions.

The individual expected and observed limits, at the 95% confidence level on the cross section times branching ratio for $A \rightarrow Z \gamma$ are shown.

