Assessment of the Water Quality Pollution Indices and the Corrosivity Analysis for Groundwater in Mubarakganj Sugar Mills Region, Kaliganj, Jhenaidah

Farah Tasneem Ahmed¹, Md. Rashel Khan Milan², Md. Masum Hossain², Md. Ferdous Alam¹, Md. Tariqul Islam¹, Md. Owaleur Rahman², Salma Sultana¹ and Nirmal Chandra Dafader³

- 1. Nuclear and Radiation Chemistry Division, Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka-1349, Bangladesh
- 2. Department of Chemical Engineering, Jashore University of Science & Technology, Jashore-7408, Bangladesh.
- 3. Chief Scientific Officer and Director, Physical Science Division, Bangladesh Atomic Energy Commission, Agargaon, Dhaka-1207, Bangladesh.

Correspondence: farahchem53@hotmail.com

Outline of the Presentation

- Introduction
- Objective of the Study
- Methodology
- Results and Discussion
- Evaluation of Pollution Indices
- Corrosion Study
- Conclusion

Introduction

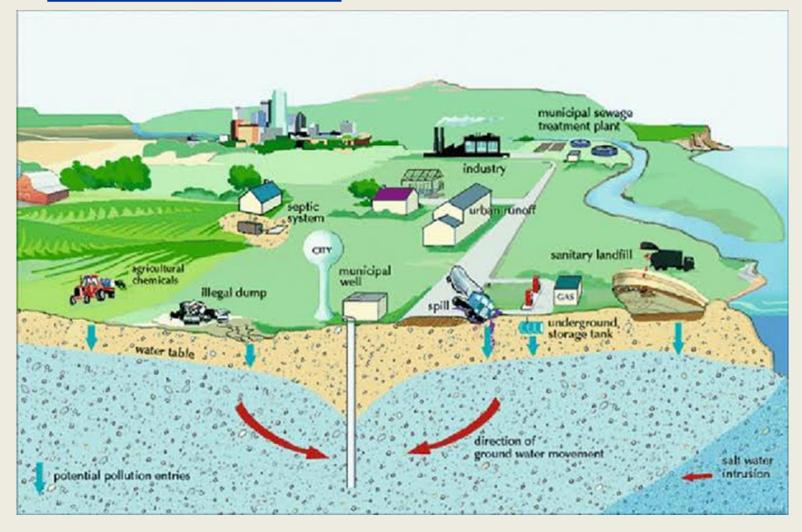


Fig 1: Groundwater pollution

☐ Increased Anthropogenic activities, both agricultural and industrial

- ☐ Heavy metal pollution in Ground

 Water (GW)
 - ☐ Risk posed from GW with potentials to cause diseases like anorexia, immune dysfunction, hypertension, liver and kidney disorders, cancers etc.

Objective of the Study

• Determine the concentrations of **HEAVY METALS** in ground water as well as the effluent collected from different locations of Mubarakganj Sugar Mills region and compare the results of groundwater with standards for drinking purposes.

• Assessment of the WATER QUALITY POLLUTION INDICES of trace metals and identify the associated risk.

• **CORROSIVITY STUDY** of the groundwater.

Study Area

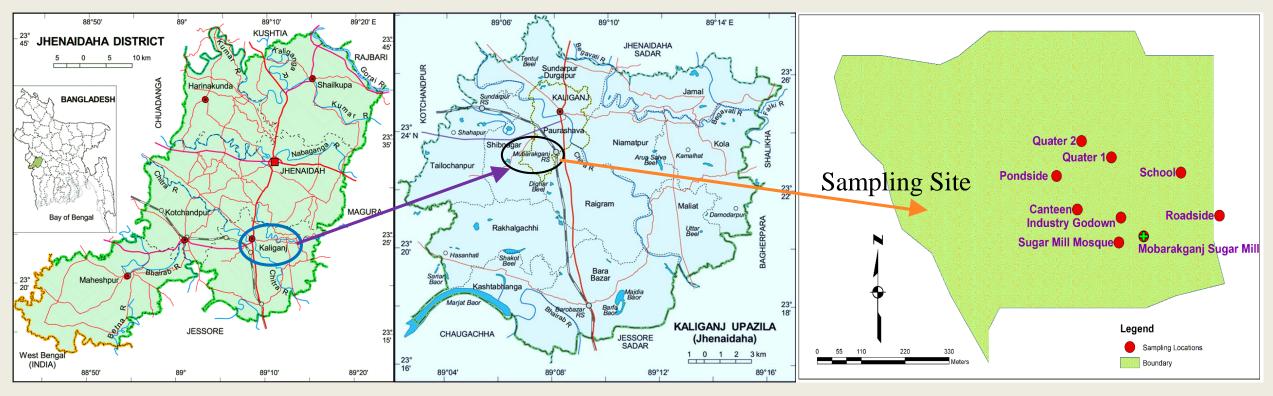
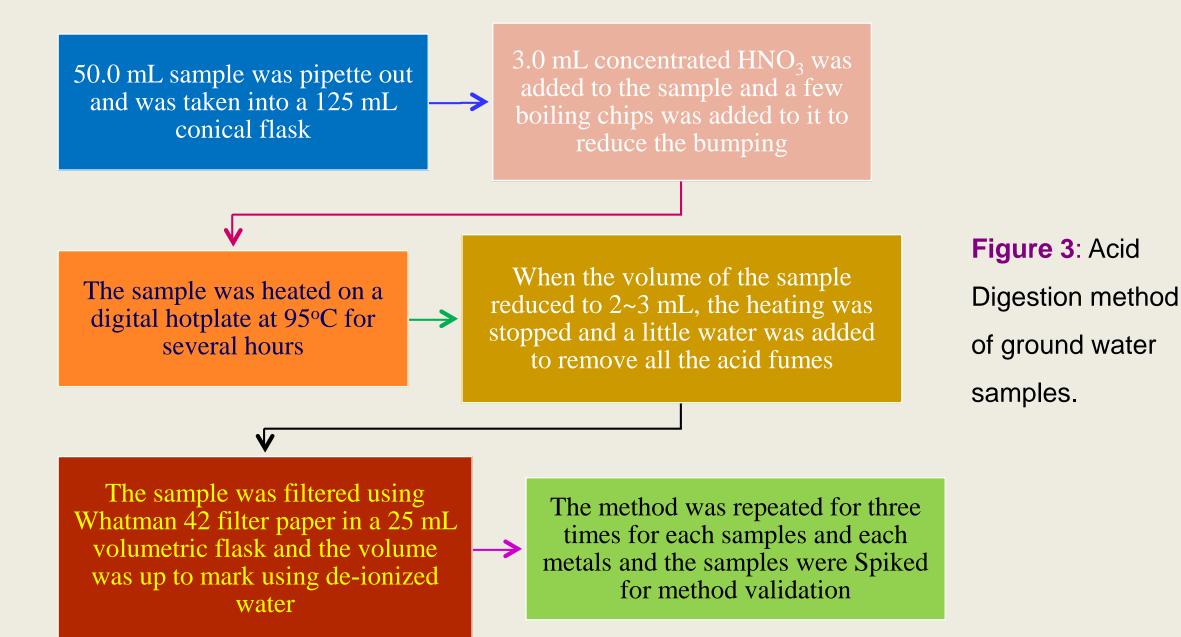



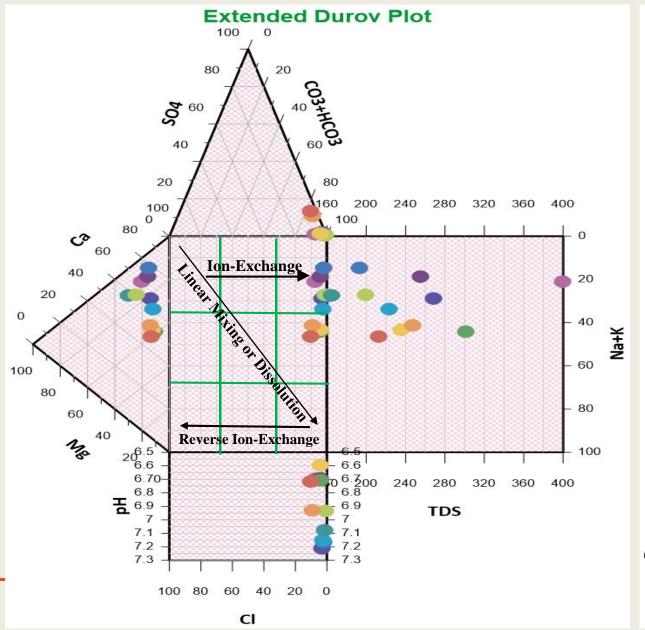
Fig 2: Study Area of Mubarakganj Sugar Mills, Kaliganj, Jhenaidaha

Mubarakganj Sugar Mill is situated in Kaliganj, Jhenaidah, sited at 23°23′ N and 89°08′ E. This sugar mill was established in 1965 and its total area is 189.9 acres and the cultivable land near mill zone is 42000 acres. Population density in Kaliganj upzilla is the highest in Jhenaidah district (BBS 2011). The sampling was done on December 2018 - January 2019.

Methodology

- Eleven (11) GW samples (1000 mL each) of various depth (80 -180 ft) and one (1) industrial effluent of Mubarakganj Sugar Mill were collected.
- pH, Electrical conductivity (EC), Salinity and Turbidity of samples were measured on sampling.
- For heavy metals and trace element analysis, acid digestion method was used. Atomic Absorption Spectrophotometer (Shimadzu AA6800) was used for heavy metals detection and UV-Visible Spectrophotometer were used for the analysis of some anions.
- For method validation, "Spike System" were used and the heavy metals recovery were found 89% to 94%.

8


Table 1: Descriptive statistics of heavy metals in collected groundwater samples.

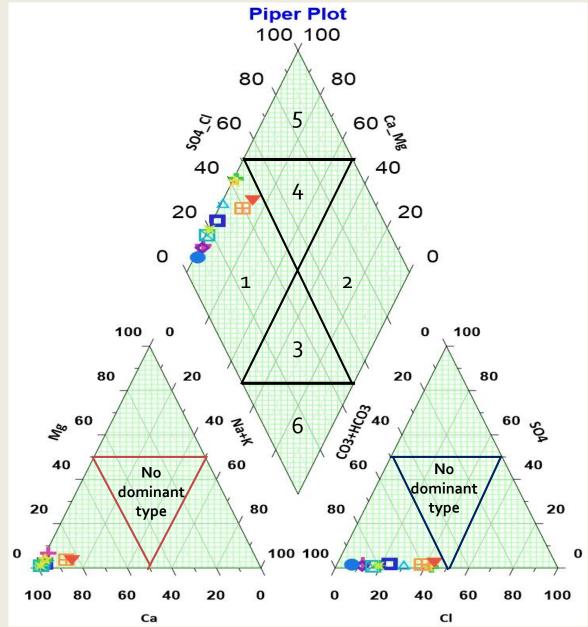

Parameters	рН	EC (μS/cm)	TDS (mg/L)	Salinity ‰	Turbidity (NTU)	HCO ₃ · (mg/L)	NO ₃ - (mg/L)	SO ₄ ² · (mg/L)	Cl· (mg/L)	Na (mg/L)	K (mg/L)
Minimum (mg/L)	6.598	299.0	164.45	0.3	11.97	52.000	1.299	1.030	0.760	4.950	0.520
Maximum (mg/L)	7.209	614.0	399.1	0.6	104.9	170.000	13.112	8.010	9.020	67.040	1.790
Average (mg/L)	6.898	429.636	245.364	0.445	54.769	102.36	7.627	3.081	2.672	25.900	1.091
Standard Deviation		±30.00	±10.51		±3.27	±4.15	±0.467	±0.694	±0.319	±1.023	±0.290
WHO (2017)	6.5-8.5		1000.00	0.5	4	250	50	250	250	200	10
BNDWQS (2009)	6.5-8.5	2000	1000.00	<1.0	10	600	10	400	600	200	12

Table 1: Descriptive statistics of heavy metals in collected groundwater samples (Cont.).

Parameters	Ca (mg/L)	Mg (mg/L)	Fe (mg/L)	Zn (mg/L)	Cu (mg/L)	Al (mg/L)	Cr (mg/L)	Cd (mg/L)	Ni (mg/L)	Pb (mg/L)
Minimum (mg/L)	37.020	10.680	0.375	0.037	0.013	0.006	0.007	0.006	0.021	0.009
Maximum (mg/L)	110.610	48.090	2.777	0.174	0.064	0.015	0.558	0.032	0.229	0.035
Average (mg/L)	69.651	20.504	1.792	0.071	0.041	0.011	0.131	0.015	0.092	0.022
Standard Deviation	±6.371	±2.957	±0.165	±0.013	±0.004	±0.001	±0.046	±0.002	±0.019	±0.008
WHO (2017)	75.0	50.0	0.30	5.0	2.0	0.2	0.05	0.003	0.07	0.01
BNDWQS (2009)	75.0	35.0	1.0	5.0	1.0	0.2	0.05	0.005	0.1	0.05

10

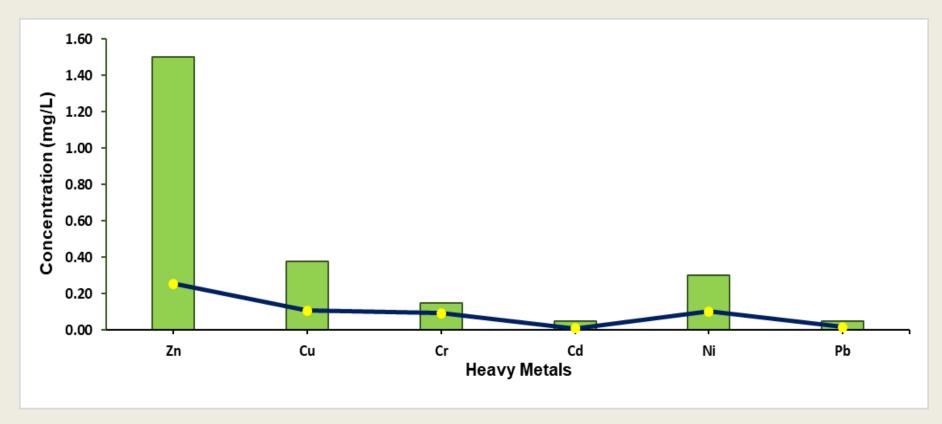


Figure 4: Concentration of some heavy metals in the effluent.

Table-2: Correlation analysis of heavy metals in the collected groundwater samples.

Variables	Fe	Zn	Си	Al	Cr	Cd	Ni	Pb
Fe	1.0000							
Zn	-0.0112	1.0000						
Cu	-0.3238	0.4998	1.0000					
Al	0.0041	-0.8013	-0.4611	1.0000				
Cr	0.3778	-0.3699	-0.0201	0.5176	1.0000			
Cd	0.1129	-0.3194	-0.0188	0.1064	0.0753	1.0000		
Ni	0.6131	-0.2868	0.0276	0.2992	0.4433	0.3089	1.0000	
Pb	-0.9902	0.8590	0.9563	0.0200	0.6418	-0.5000	-0.5270	1.0000

Heavy metal pollution index is a method of rating that shows the composite influence of individual heavy metal on the overall quality of water.

Table-2: Heavy metal pollution indices in the collected groundwater samples.

Indices	Equation	Classification	Samples (%)
Heavy Metal	$\mathbf{HEI} = \Sigma(\mathbf{H_c/H_{MAC}})$	HEI≤10: low metal concentration in drinking water	18%
Evaluation Index		10≤HEI≤20: medium metal concentration in drinking water	64%
(HEI)		HEI>20: high metal concentration in drinking water	18%
Heavy Metal	$HPI = \Sigma((\mathbf{W_i} \times \mathbf{Q_i})/\mathbf{W_i})$	HPI<100: low heavy metal pollution,	
Pollution Index	where $\mathbf{Q}_{i} = \Sigma(((\mathbf{M}_{i} - \mathbf{I}_{i}) / (\mathbf{S}_{i} - \mathbf{I}_{i})) \times 100)$	HPI = 100: heavy metal pollution on the threshold risk	
(HPI)		HPI>100: high heavy metal pollution (critical pollution	100%
(=== =)		index)	
The Degree of	$C_d = \Sigma C f_i$	$C_d < 1$: low level contamination	9%
Contamination (C _d)	Where, $Cf_i = (CA_i / CN_i) - 1$	1 <cd<3: contamination<="" medium="" th=""><th>9%</th></cd<3:>	9%
	, , , , , , , , , , , , , , , , , , ,	C _d >3: high contamination	82%

Pollution Indices Table-2: Heavy metal pollution in

Table-2: Heavy metal pollution indices in the collected groundwater samples (cont.).

Indices	Equation	Classification	Samples (%)
Modified Degree of	$\mathbf{mC_d} = \mathbf{\Sigma Cf_i/n}$	mCd<1.5: Nil to very low degree of contamination	82%
Contamination		1.5≤mCd<2: Low degree of contamination	9%
(mC_d)		2≤mCd<4: Moderate degree of contamination	9%
(0)		4≤mCd<8: High degree of contamination	
Pollution Load	$\mathbf{PLI} = (\mathbf{Cf_1} \times \mathbf{Cf_2} \times \mathbf{Cf_3} \times \dots \times \mathbf{Cf_n})^{1/n}$	PLI<1: Unpolluted condition of the site	27%
Index (PLI)		PLI = 1: The presence of only baseline levels of pollutants	
		PLI>1: Progressive deterioration of the water quality	73%
Potential Ecological	$\mathbf{PERI} = \mathbf{\Sigma E_r}$	PERI<150: Low ecological risk	36%
Risks (PERI)	Where, $\mathbf{E_r} = \mathbf{T_{rf}} \times \mathbf{CF}$	150 <peri<300: ecological="" moderate="" risk<="" th=""><th>55%</th></peri<300:>	55%
		300 <peri<600: considerable="" ecological="" risk<="" th=""><th>9%</th></peri<600:>	9%
		PERI>600: Very high ecological risk	
Pollution Index (PI)	$PI = \sqrt{[{(CF_{avg})^2 + (CF_{max})^2}/2]}$	PI<0.7: No pollution	
		0.7<pi<1< b="">: indicates slightly polluted</pi<1<>	50%
		1.0 <pi<2.0: moderately="" polluted<="" th=""><th></th></pi<2.0:>	
		2.0 <p<3.0: condition<="" polluted="" severely="" th=""><th>25%</th></p<3.0:>	25%
		PI>3.0: heavily polluted condition	25%

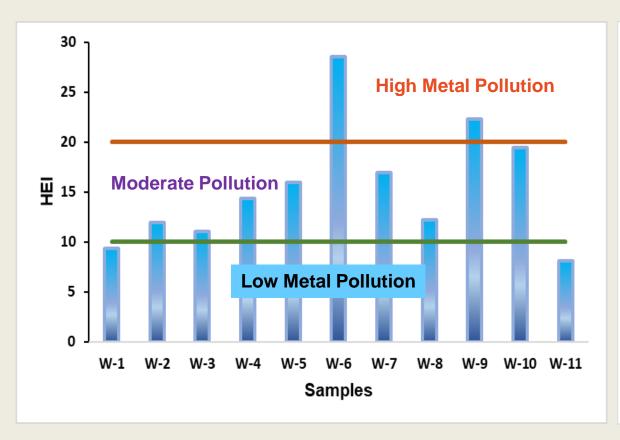
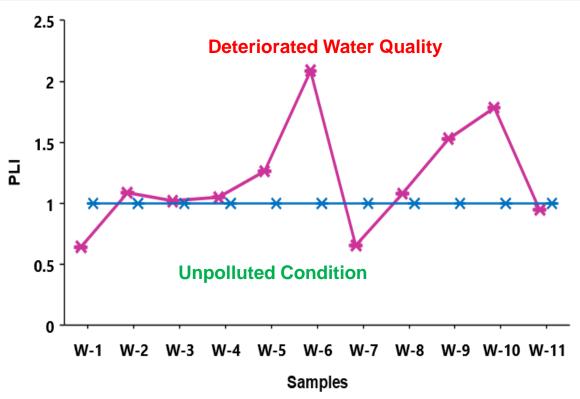



Figure 5: Graphical Representation of HEI

Figure 6: Graphical Distribution of PLI in Groundwater

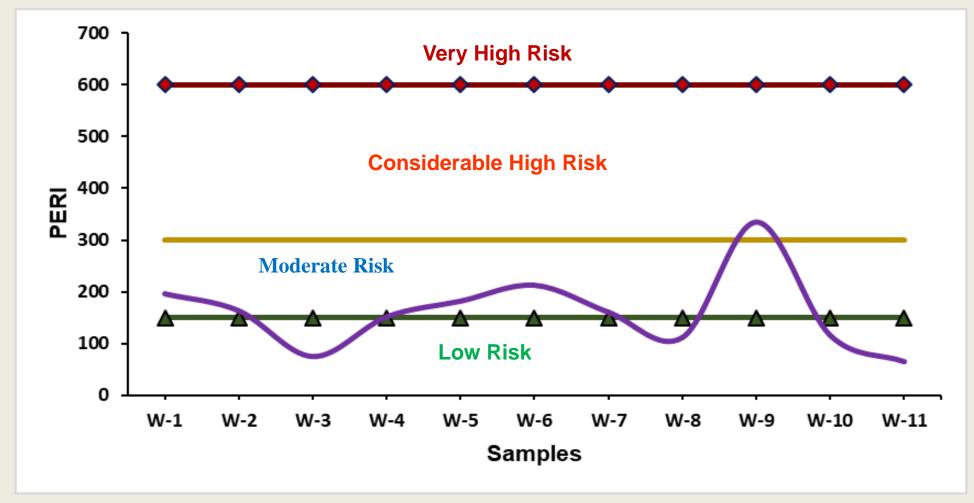
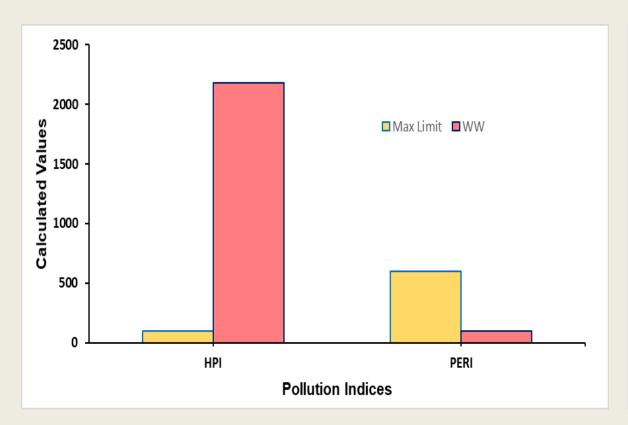



Figure 7: Graphical Distribution of PERI

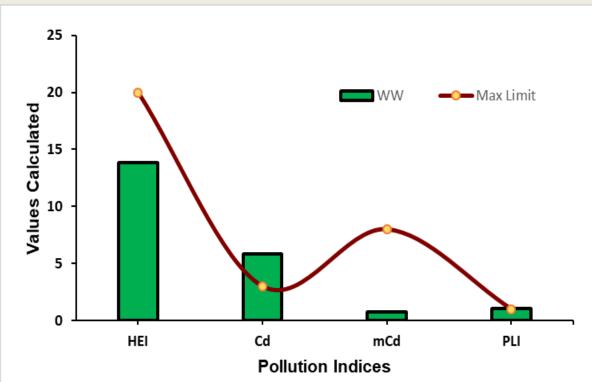


Figure 8: Pollution Indices of the Effluent of Mubarakganj Sugar Mill

To identify the potential health risks several parameters has been measured.

• Hazard Quotient (HQ):

$$\mathbf{HQ_{ing}} = \frac{C_{water} \times IR \times EF \times ED}{AT \times BW \times R_f D_{oral}}$$

$$\begin{aligned} \textbf{HQ}_{\textbf{dermal}} = & \begin{array}{c} C_{water} \times IR \times EF \times ED \times S_A \times E_T \times K_p \times CF \\ \\ AT \times BW \times R_f D_{dermal} \end{array} \end{aligned}$$

- Hazard Index (HI): $HI_{ing} = \sum HQ_{ing}$ and $HI_{dermal} = \sum HQ_{dermal}$
- Carcinogenic Risk (CR): $CR_{ing} = \frac{C_{water} \times IR \times EF \times ED}{AT \times BW} \times CSF$

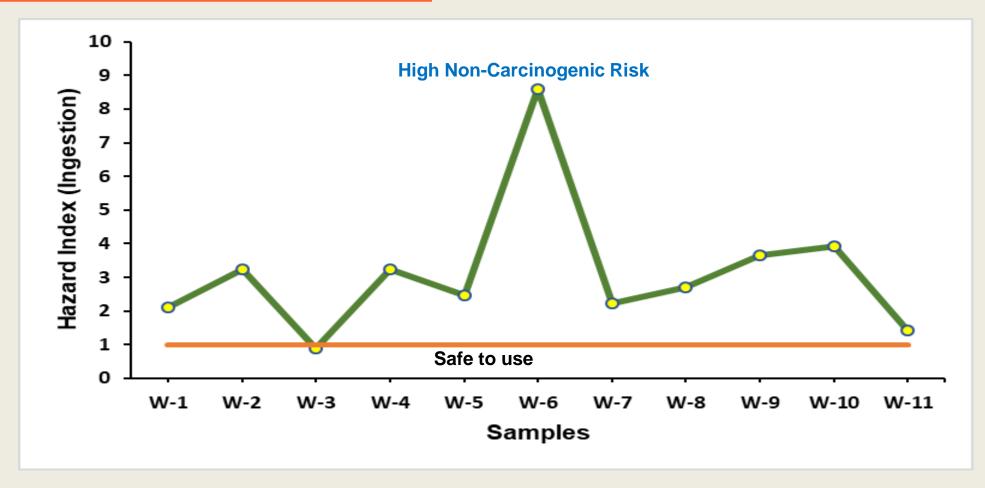
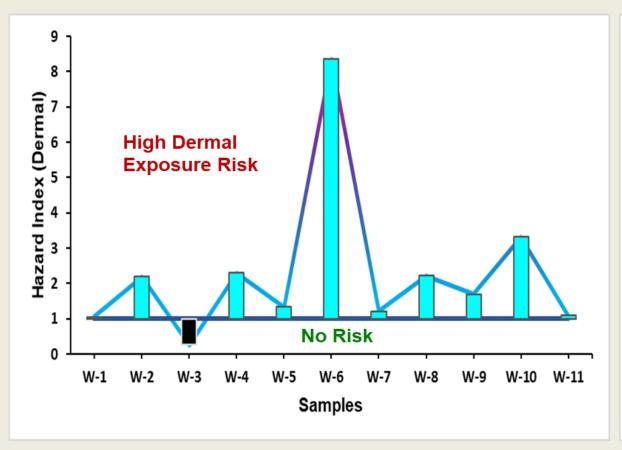



Figure 9: Non-Carcinogenic Risk assessment of groundwater for oral ingestion.

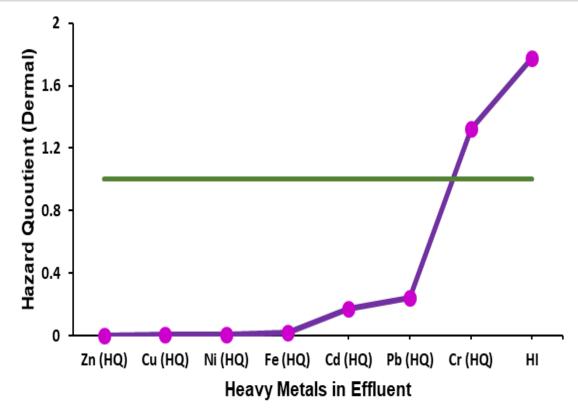
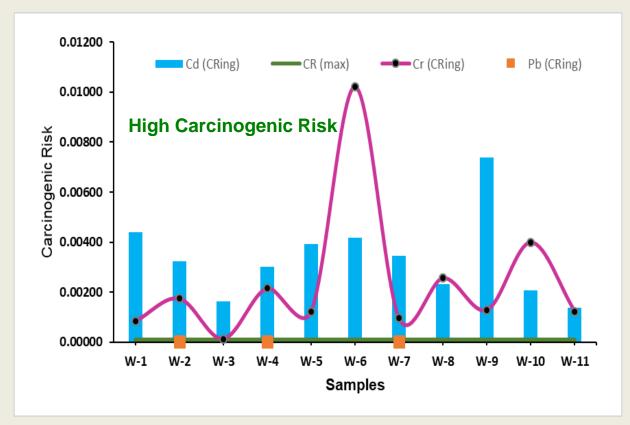



Figure 10: Non-Carcinogenic Risk assessment of GW and Effluent samples for dermal exposure.

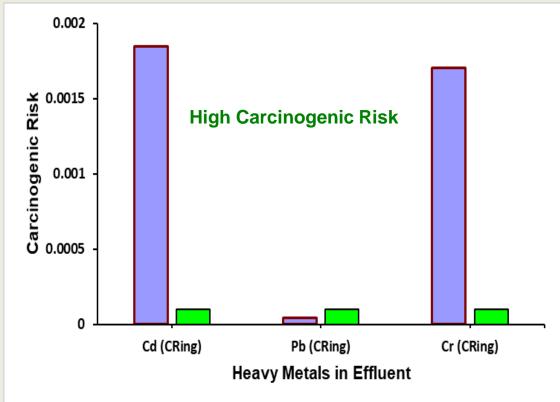


Figure 11: Carcinogenic Risk estimation of groundwater and effluent samples

Corrosion Study

Corrosion is a complex series of reactions between the water and metal surfaces and materials in which the water is stored or transported. Corrosive groundwater, if untreated, can dissolve lead and other metals from pipes and other components present in household plumbing.

Table-3: Corrosivity study of groundwater

Corrosion	Equation	Classification	Samples
Parameter			
Langelier	$\mathbf{LSI} = \mathbf{pH} - \mathbf{pH}_{\mathbf{s}}$	LSI<0: Water is not saturated and has corroding tendency	All samples (11)
Saturation Index	$pH_s = (9.3 + A + B) - (C + D)$	LSI = 0 : Water is saturated and has no scaling tendency	
(LSI)	$A = (Log_{10} (TDS) - 1)/10$	LSI>0: Water is supersaturated and has scaling tendency	
(_,,_,	$B = -13.12 \times Log_{10} (T + 273) + 34.55$		
	$C = Log_{10} (Ca^{2+}) - 0.4$		
	$\mathbf{D} = \mathbf{Log_{10}} \left(\mathbf{Alk} \right)$		
Aggressive Index	$AI = pH + Log_{10} (Alk \times Ca^{2+})$	AI<10: Water is severely corrosive (highly aggressive)	
(AI)		10≤AI≤12: Water is moderately corrosive	All samples (11)
		AI>12: Water has scaling tendency and has non-aggressive tendency	

Corrosion Study

Table-3: Corrosivity study of groundwater (cont.)

Corrosion	Equation	Classification	Samples
Parameter			
	$RI = 2pH_s - pH$	RI≤ 5.5: Water has rigorous scaling tendency	
Dyznor Stobility		5.5<ri<6.2:< b=""> Water has scaling tendency</ri<6.2:<>	
Ryzner Stability		6.2≤RI≤6.8 : Water is balanced and has no scaling or corrosive tendencies	
Index (RI)		6.8<ri<8.5< b="">: Water has corrosive tendency</ri<8.5<>	
		RI ≥ 8.5: Water has rigorous corrosive tendency	All samples (11)
Duolzopius Sooling	$PI = 2pH_s - pH_{eq}$	PI<6: Water has scaling tendency	
Puckorius Scaling	$pH_{eq} = 1.465 \times Log_{10}(Alk) + 4.54$	6≤PI≤7 : Water has little scaling and corrosive tendencies	
Index (PI)		PI>7: Water has significant corrosive tendency	All samples (11)
	$CR = [(Cl^{-}/35) + \{(2 \times SO_4^{2-})/96\}]/[\{2 \times$	CR < 1: Recommended to the transport of any source of water in any kind	All samples (11)
Corrosivity Ratio	$(CO_3^{2-} + HCO_3^{-})/100\}]$	of pipes	
(CR)		CR > 1: Corrosive nature of water, means not to be transported through	
		metal pipes	

24

Corrosion Study

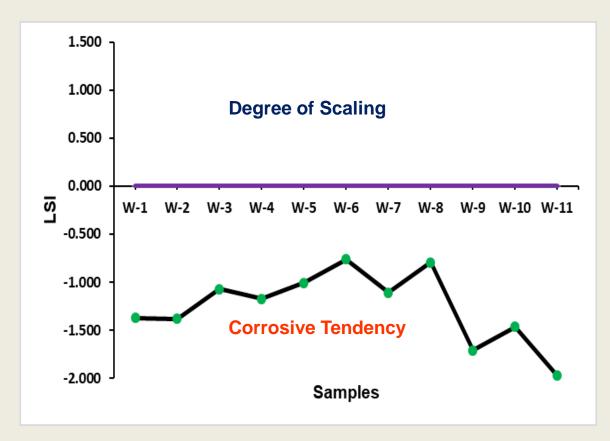


Figure 11: Langelier Saturation Index in GW

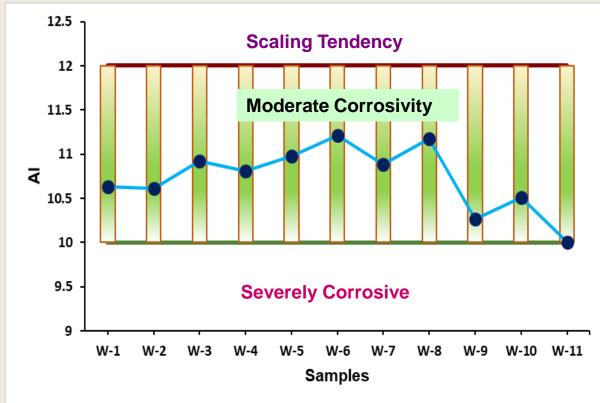


Figure 12: Aggressive Index showing groundwater corrosivity

Corrosion Study

Table-4: Correlation analysis of Corrosion indices with some physical and chemical parameters.

Variables	LSI	AI	RI	PI	pН	EC	TDS	Salinity	TA	TH	Cl-
LSI	1.000										
AI	0.999	1.000									
RI	-0.964	-0.964	1.000								
PI	-0.792	-0.794	0.926	1.000							
pН	0.632	0.624	-0.424	-0.079	1.000						
EC	-0.134	-0.104	0.024	-0.140	-0.418	1.000					
TDS	-0.210	-0.182	0.097	-0.077	-0.441	0.968	1.000				
Salinity	-0.106	-0.076	0.004	-0.141	-0.407	0.952	0.897	1.000			
TA	0.694	0.695	-0.853	-0.976	-0.033	0.136	0.068	0.161	1.000		
TH	-0.033	-0.003	0.009	-0.019	-0.243	0.779	0.766	0.871	-0.027	1.000	
Cl-	-0.623	-0.632	0.641	0.582	-0.203	-0.130	-0.021	-0.120	-0.465	-0.065	1.000

Conclusion

26

Conclusion

Thank You All

