

Poster ID: ICGR-P-030

Groundwater Quality Evaluation through Heavy Metal Pollution Indices and Corrosion Study in Tangail Sadar Upzilla, Dhaka, Bangladesh

F. T. Ahmeda,* S. K. Sahab, M. F. Alama, S. Shahnaza, S. A. Mamunb, A. H. A. N. Khanc, M. T. Islama and N. C. Dafaderd

- a. Nuclear and Radiation Chemistry Division, Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka-1349, Bangladesh.
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.
- Isotope Hydrology Division, Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka-1349, Bangladesh.
- d. Chief Scientific Officer and Director, Physical Science Division, Bangladesh Atomic Energy Commission, Agargaon, Dhaka-1207, Bangladesh.

Correspondence: farahchem53@hotmail.com

Summary

study emphasized on the groundwater quality of Tangail Sadar Upzilla, Dhaka by evaluating the heavy metal pollution indices and the corrosivity of the water. A total of ten groundwater samples were collected at various depths (60-180 ft) from different places of Tangail Sadar Upzilla and the concentration of Ca, Mg, Fe, Mn, Cu, Zn, Ni, Cd, Cr, Pb and As were assessed. The heavy metal pollution indices like HPI, HEI, C_d, mC_d, PI, PLI, PERI etc. was evaluated and the average for HPI, HEI, C_d and PI was 4509.20, 44.51 25.68 and 5.148 individually and all these parameters indicate very severe heavy metal pollution. Although PERI, mC_d and PLI showed moderate pollution status independently. Additionally, according to corrosion study like Langelier Saturation Index (LSI), Ryzner Stabiltiy Index (RI), Agreesive Index (AI) and Pukorious Scaling Index (PI) all the samples showed moderate to high corrosivity but the Corrosivity Ratio (CR) was found less than 1, so, the water can be transported in any kind of

Introduction

Water resource has played a critical and vital role throughout the history in the growth and development of human civilization. Due rapid industrialization and increasing human population, the stress on natural resources is increasing and their conservation is one of the major for mankind.^[1] challenges concentration of chemical constituents greatly influenced by which is geological formations anthropogenic activities determine the groundwater quality. Increased agricultural activities in Bangladesh are likely to have an impact on the groundwater quality.^[2]

Study Area

Tangail Sadar Upazilla is located in between 24'10' and 24'22' north latitudes and in between 88'46' and 89'59' east longitudes. The upazilla is situated on the bank of Jamuna River. Sampling has done on April 2017.

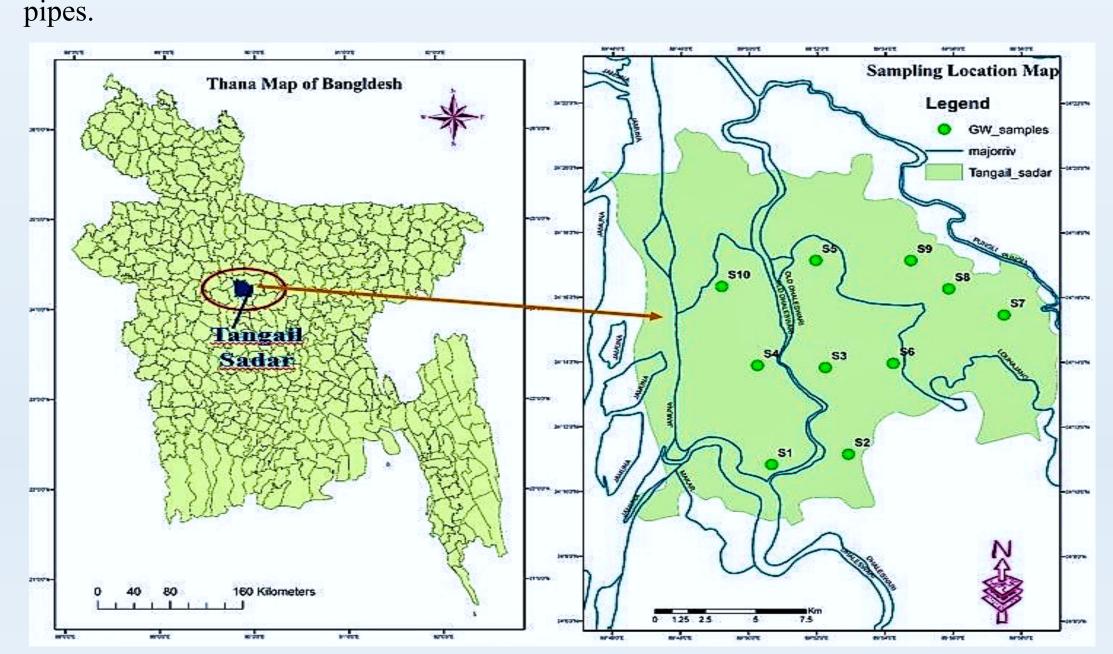
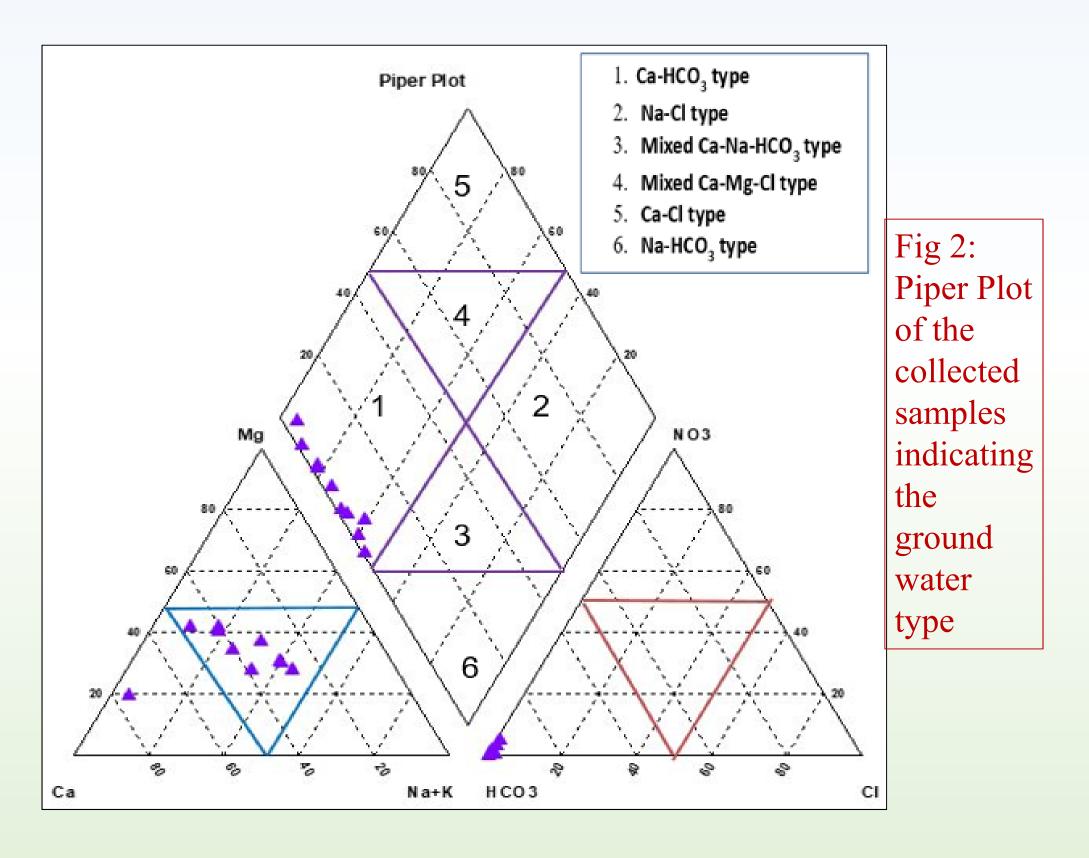
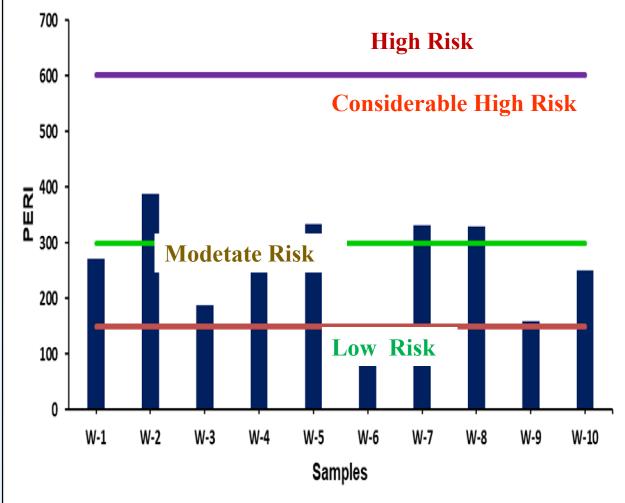



Fig 1: Study Area of Tangail Sadar Upzilla


Materials and Methods

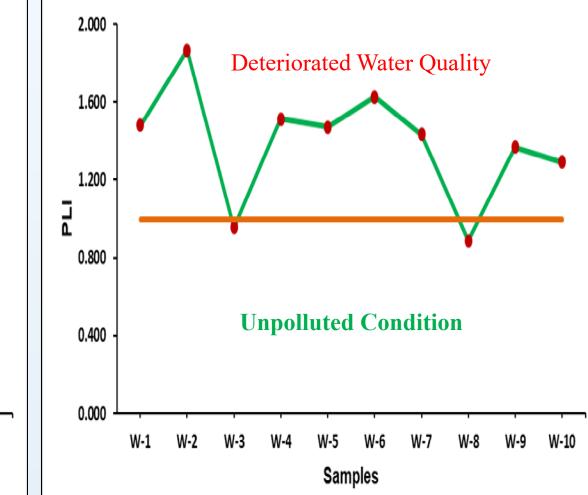
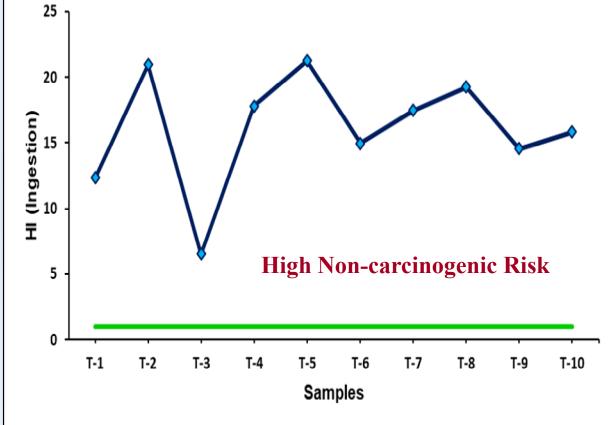

- Ten (10) samples were taken from 60-180 feet.
- pH, EC and DO were measured on site.
- Heavy metals i.e., Ca, Mg, Fe, Mn, Cu, Zn, Ni, Cd, Cr, Pb and As were measured by AAS after successive acid digestion.^[3]
- Anions like SO_4^{2-} , NO_3^{-} , Cl^{-} and HCO_3^{-} were measured by UV-Visible Spectrophotometer and Conventional Titration method respectively.^[3]

Table 1: Descriptive statistics of heavy metals in collected samples

Cd Ca Zn Cr Pb Mn **Parameters** (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)(mg/L) (mg/L) (mg/L) (mg/L)(mg/L) 60.40 26.00 7.390 0.910 1.520 0.152 0.034 0.107 0.170 Maximum 6.84 0.440 0.014 BDL* 0.009 10.70 0.020 0.220 0.020 0.040 Minimum 31.04 15.62 3.572 0.415 1.091 0.075 0.039 0.014 0.040 0.119 Mean 0.572 0.016 0.003 1.972 1.126 0.096 0.120 0.005 0.011 0.012 SD WHO Std 0.07 0.003 0.3 0.4 0.05 0.01 **3.0** 0.01 **50 75** (2017)**BD Std** 0.005 **5.0** 0.10 0.05 0.05 0.05 1.0 0.1 **75** 35 (2009)



Results and Discussions

Fig 3: Graphical Distribution of PERI

Fig 4: Graphical Distribution of PLI

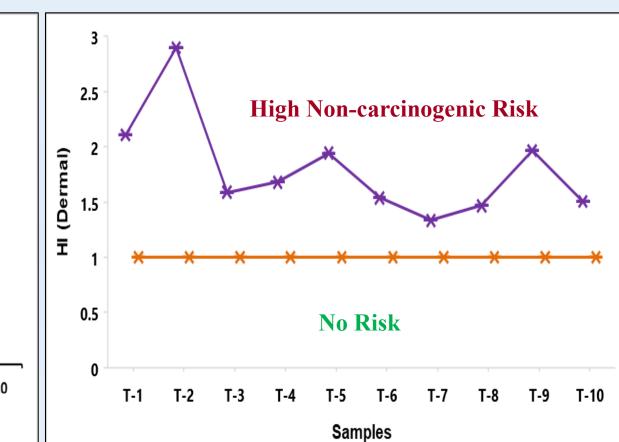


Fig 5: Non-Carcinogenic Risk for both Oral Ingestion and Dermal Exposure of Groundwater in Tangail Sadar Upzilla

Table 2: Corrosion Study of Study Area^[5]

Indices	LSI	AI	RI	PI	CR
Maximum	-0.4174	11.4181	9.8072	9.6703	0.0510
Minimum	-1.3334	10.4452	8.0940	7.2054	0.0035
Remarks	Corrosive tendency	Moderate corrosive tendency	Moderate to aggressive corrosive nature	Corrosive tendency	Recommended to transport in any kind of pipes

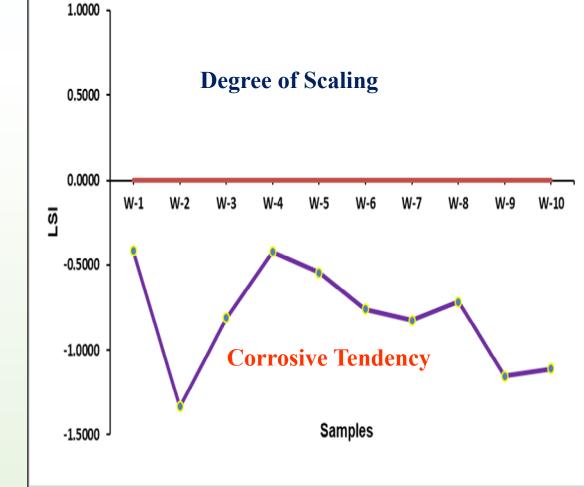


Fig 6: Graphical Distribution of LSI

Aggressive Corrosion Tendency Moderate Corrosive Tendency Balanced Condition High Scaling Tendency Samples

Fig 7: Graphical View of Ryzer Stability Index

Table 3: Heavy Metal Pollution Indices^[5]

		avy Metal i oliution illuit	
Indices		Classification	Samples (%)
	Metal	HEI≤10: low metal concentration in	
Evaluation Index (HE		drinking water	
		10 <hei<20: medium="" metal<="" td=""><td></td></hei<20:>	
		concentration in drinking water	
		HEI>20: high metal concentration in	100%
		drinking water	
Heavy	Metal Index	HPI<100: low heavy metal pollution,	
Pollution (HPI)		HPI>100: high heavy metal pollution	100%
		(critical pollution index).	
The Degree of Contamination (C _d)		C _d <1: low level contamination	
		1 <cd<3: contamination<="" medium="" td=""><td></td></cd<3:>	
		C _d >3: high contamination	100%
Modified Degree of Contamination (mC _d)		mCd<1.5: Nil to very low degree of	10%
		contamination	
		1.5\le mCd<2: Low degree of	20%
· · · ·		contamination	
		2\le mCd<4: Moderate degree of	40%
		contamination	
		4≤mCd<8: High degree of	30%
		contamination	
		8≤mCd<16: Very high degree of	
		contamination	
Pollution Load Index (PLI)		PLI<1: Unpolluted condition of the site	20%
		PLI>1: Progressive deterioration of the	
		water quality	80%
Potential		PERI< 150: Low ecological risk	10%
Ecological	Risks	150 <peri<300: ecological<="" moderate="" td=""><td>50%</td></peri<300:>	50%
(PERI)		risk	
		300 <peri<600: considerable<="" td=""><td>40%</td></peri<600:>	40%
		ecological risk	
		PERI>600: Very high ecological risk	
Pollution	Index	PI<0.7: No pollution	11.11%
(PI)		0.7 <pi<1: indicates="" polluted<="" slightly="" td=""><td>44.44%</td></pi<1:>	44.44%
		1.0 <pi<2.0: moderately="" polluted<="" td=""><td></td></pi<2.0:>	
		2.0 <p<3.0: condition<="" polluted="" severely="" td=""><td>11.11%</td></p<3.0:>	11.11%
		PI>3.0: heavily polluted condition	33.33%
		11 5.0. How in politica condition	55.55/0

Conclusion

Heavy metal pollution index is an effective tool to characterize the groundwater pollution with respect to heavy metals. The groundwater of Tangail Sadar Upzilla was polluted with heavy metals and is not very suitable for daily as well as long term usage.

Corrosion indices were also calculated of the collected samples. Although CR<1 indicating the water is suitable for transportation through pipes but it will corrode the pipe materials for long term running.

So, water should be properly treated and purified before using for drinking and other household purposes.

References

- 1. T. Kaur, R. Bhardwaj & S. Arora (2017), "Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India", Appl. Water. Sci., 7, 3301–3316.
- 2. K. Srinivasamoorthy, M. Gopinath, S. Chidambaram, M. Vasanthavigar & V. S. Sarma (2014), "Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India", J King Saud Univ., **26**, 37–52.
- 3. L. S. Clesceri, A. E. Greenbarg, and A. D. Eaton, (2005), "Standard Methods for the Examination of Water and Wastewater", 20th ed. American Public Health Association (APHA), Washington D.C.
- 4. D. S. Kalyani, V. Rajesh, E. U. B. Reddi, K. C. Kumar and S. S. Rao, (2017), "Correlation between corrosion indices and corrosiveness of groundwater: a study with reference to selected areas of Krishna District, Andhra Pradesh, India", Environ. Earth. Sci., 76(16), 1-13.
- 5. A. Chaturvedi, S. Bhattacharjee, G. C. Mondal, V. Kumar, P. K. Singh and A. K. Singh, (2019), "Exploring new correlation between hazard index and heavy metal pollution index in groundwater", Ecological Indicators, **97**, 239-246.