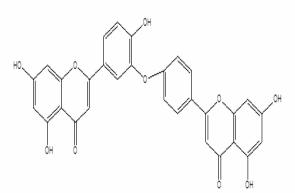


Effect of *Ochna Kibbiensis* leaves on *Plasmodium berghei*

EMERGING SCIENTIST Feb. 21-22, 2022 Faisalabad, Pakistan


Yusuf Amina Jega et al.

Usmanu Danfodiyo University, Sokoto, Nigeria Department of Pharmaceutical & Medicinal Chemistry

Introduction

- *Ochna kibbiensis* belongs to the Ochnaceae family
- It is a shrub or small tree found in tropical Africa from Guinea to southern and northern Nigeria
- ✓ Ethnomedicinal Uses
- Malaria
- Pain
- **♦** Asthma
- Dysentery
- **❖** Inflammation
- **✓** Pharmacological actions
- Antimicrobial (Abdullahi et al., 2015)
- Anti-proliferative (Abdullahi et al., 2016)
- **✓** Phytochemistry
- Ochnaflavone (Abdullahi et al., 2016)

Ochnaflavone

Picture of Ochna kibbiensis

Statement of Research Problem

Malaria is a major public health problem affecting not less than 40 % of the world's population (Snow et al., 2005).

An estimated 1.2 billion are at high risk of transmission (≥1 case per 1000 population), more than half of which live in the African regions and Nigeria alone accounts for a quarter of all malaria cases in Africa (WHO, 2008).

African region accounts for 81% and 91% of the world cases and deaths respectively, with 86% of the mortalities observed among the under-fives (WHO, 2014).

The disease poses severe impediment to social and economic development through a variety of ways including school and work absenteeism, high treatment expenses and decreased productivity in farming.

About 70% of Nigerians are poor and majority live in rural areas. The dare economic situation in Nigeria and many other under-developed countries necessarily means that majority of the populace cannot afford the current artemisinin-based combination therapy (ACT), where available (Fred and Ghee, 2011).

Justification of the Study

- Malaria affects the world poorest countries and largely offers unattractive market for international pharmaceutical investors (Fred and Ghee, 2011).
- Ochna kibbiensis is used in ethnomedicine to treat malaria (Burkill, 1985)

Aim and Objectives

- The aim of the study was to evaluate the effect of methanol leaf extract of *O. kibbiensis* and its n-hexane, dichloromethane, ethylacetate, and n-butanol soluble fractions against *Plasmodium berghei*.
- ❖ The work was achieved through the implementation of the following series of major activities/objectives:
- ✓ The median lethal dose (LD₅₀) of the methanol extract and its fractions was determined according to Lorke's method
- ✓ The antimalarial effect of the extract and its fractions was investigated according to the methods described by Ryley and Peters suppressive, curative and prophylactic test using Chloroquine-sensitive *Plasmodium berghei* (NK65).

Research Hypothesis

The leaves of Ochna kibbiensis has antimalarial activity

Statistical analysis

* Results were expressed as mean ± standard error of mean (SEM). Statistical analysis of control and test data was based on simple one-way ANOVA and Dunnett's post hoc test was used for different doses within a group. Bonferroni post hoc test was used to compare results between the means at the significance level considered at *p*<0.05

Methodology

Pulverized Leaves of O. kibbiensis

Crude methanol leaf extract

Separation is based on solute partitioning between two liquid phases. (relative solubility)

- n-Hexane
- DCM
- Ethylacetate
- n-Butanol

Antimalarial assay

- **Ryley and Peters**
- Suppressive
- Curative
- Prophylactic test
- Using Chloroquine-sensitive *Plasmodium berghei* (NK65)

Results and Discussion

Extraction and Fractionation Yield

Table 1: Percentage Yield of *O. kibbiensis*

Extract/Fraction	Weight (g)	% Yield
Methanol	825.00	22.11
n-Hexane	5.59	1.74
Dichloromethane	2.17	0.28
Ethylacetate	34.69	4.51
n-Butanol	129.29	16.79

Acute toxicity studies of the extract & fractions of *O. kibbiensis*

Table 2: Median lethal dose (LD50) of extract/fractions of *O. kibbiensis*

Extract/Fraction	LD ₅₀ value (mg/kg)
Methanol	> 5000.00
n-Hexane	> 5000.00
Dichloromethane	> 5000.00
Ethylacetate	> 5000.00
n-Butanol	1702.94

Antimalarial studies – Suppressive test

Table 3: Suppressive	effect of MFL	of OK against P	horahoi hor	ahei infection in mice
Table 3. Supplessive	CHECK OF MIPP	i ui un agailist i	. Dei gilei bei	gner miccuon m micc

Table	ible 3: Suppressive effect of MEL of OK against P. bergher bergher infection in mi				e 4: 3u	ppressive effect	of HF of OK against P. berghet berghet in	nection in mice
S/N	Treatment	Average Parasitaemia± SEM	% Chemo-	S/N	Trea	atment	Average Parasitaemia± SEM	% Chemo-
	(mg/kg/day)		Suppression		(mg	/kg/day)	\vee	Suppression
$\times 1$	NS 0.2 mL	10.00 ± 0.55	-	1	NS	0.2 mL	10.00 ± 0.55	$\triangle \triangle $
2	MEL 500	6.75 ± 0.75***	32.50	2	HF	500	0.75 ± 0.75*	92.50
3	MEL 250	6.00 ± 0.71 ***	40.00	3	HF	250	1.00 ± 0.41*	90.00
4	MEL 125	$3.80 \pm 1.02***$	62.00	4	HF	125	0.75 ± 0.48 *	92.50
5	CQ 5	0.60 ± 0.24	94.00	5	CQ	5	0.60 ± 0.24	94.00

Table 5: Suppressive effect of DCM fraction of OK against P. berghei berghei infection in mice

S/N	Treat	ment	Average Parasitaemia± SEM	% Chemo-
	(mg/l	(mg/kg/day)		Suppression
1	NS	0.2 mL	10.00 ± 0.55	-
2	DCM	500	8.50 ± 0.65**	15.00
3	DCM	250	3.20 ± 1.46 *	68.00
4	DCM	125	1.00 ± 0.00 *	90.00
5	CQ	5	0.60 ± 0.24	94.00

Table 6: Suppressive effect of EF of <i>OK</i> against <i>P. berghei berghei</i> infection in mice
--

Table A. Suppressive effect of HE of OV against D harabai harabai infection in mice

Tubic	. 0. 00	ippi cooive c	neet of Er of on against rebergher bergher in	icction in inicc
S/N	Trea	atment	Average Parasitaemia± SEM	% Chemo-
	(mg	/kg/day)		Suppression
1	NS	0.2 mL	10.00 ± 0.55	-
2	EF	500	3.60 ± 0.81*	64.00
3	EF	250	3.20 ± 0.97*	68.00
4	EF	125	2.80 ± 0.86*	72.00
5	CQ	5	0.60 ± 0.24	94.00

Table 7: Suppressive effect of BF of OK against P. berghei berghei infection in mice

		I I		
S/N	Trea	atment	Average Parasitaemia± SEM	% Chemo-
	(mg	/kg/day)		Suppression
1	NS	0.2 mL	10.00 ± 0.55	-
2	BF	500	0.60 ± 0.40 *	94.00
3	BF	250	0.20 ± 0.20 *	98.00
4	BF	125	1.60 ± 1.17*	84.00
5	CQ	5	0.60 ± 0.24	94.00

Key: NS=Normal saline; MEL= Methanol leaf extract of OK; HF=n-Hexane fraction; DCM=Dichloromethane fraction; BF=n-Butanol fraction; CQ= Chloroquine; OK= Ochna kibbiensis. Values were expressed as Mean±SEM (n=5). Values of the group with * are statistically significantly (p<0.05) different from NS treated. Values of the group with superscript **are statistically significantly different from NS and chloroquine treated groups

Antimalarial studies - Curative test

Tal	ole 9: Curative eff	fect of MEL of <i>OK</i> against <i>P. berghei berghei</i> inf	ection in mice
S/N	Treatment	Average Parasitaemia± SEM	% Cure

S/N	Treat	ment	Average Parasitaemia± SEM	% Cure
	(mg/l	kg/day)		
1	NS	0.2 mL	8.60 ± 1.69	=
2	MEL	500	2.40 ± 0.87*	72.10
3	MEL	250	5.80 ± 1.56	32.60
4	MEL	125	6.40 ± 0.98	25.60
5	CQ	5	2.60 ± 0.51	69.80

S/N	Trea	atment	Average Parasitaemia± SEM	% Cure
-	(mg	/kg/day)		
1	NS	0.2 mL	8.60 ± 1.69	* * * *
2	HF	500	5.00 ± 1.30	41.90
3	HF	250	7.40 ± 0.50**	14.00
4	HF	125	$8.40 \pm 0.68**$	2.30
5	CQ	5	2.60 ± 0.51	69.80

Table 11: Curative effect of DCM fraction of OK against P. berghei berghei infection in mice

S/N	Treatment	Average Parasitaemia± SEM	% Cure
	(mg/kg/day)		
1	NS 0.2 mL	8.60 ± 1.69	-
2	DCM 500	4.75 ± 1.25	44.80
3	DCM 250	1.00 ± 0.41 *	88.40
4	DCM 125	3.40 ± 1.72	60.50
5	CQ 5	2.60 ± 0.51	69.80

Table 12: Curative effect of EF fraction of OK against P. herahei herahei infection in mice

Table 12. Curative enect of El Traction of OK against 1. Derghet berghet infection in it						
	S/N	Trea	atment	Average Parasitaemia± SEM	% Cure	
		(mg/kg/day)				
	1	NS	0.2 mL	8.60 ± 1.69	-	
	2	EF	500	6.00 ± 1.34	30.20	
	3	EF	250	4.20 ± 0.49	51.20	
	4	EF	125	6.25 ± 0.63	27.30	
	5	CQ	5	2.60 ± 0.51	69.80	

Table 13: Curative effect of BF fraction of OK against P. berghei berghei infection in mice

able 15: daragive enect of Br traction of on against 1: bergiver bergiver infection in fine						
S/N	Trea	atment	Average Parasitaemia± SEM	% Cure		
	(mg/kg/day)					
1	NS	0.2 mL	8.60 ± 1.69	=		
3	BF	500	3.60 ± 1.12*	58.14		
2	BF	250	2.20 ± 1.28*	74.42		
4	BF	125	0.50 ± 0.29*	94.18		
5	CQ	5	2.60 ± 0.51	69.80		

Key: NS=Normal saline; MEL= Methanol leaf extract of OK; HF=n-Hexane fraction; DCM=Dichloromethane fraction; BF=Ethylacetate fraction; BF=n-Butanol fraction; CQ= Chloroquine; OK= Ochno kibbiensis. Values were expressed as Mean±SEM (n=5). Values of the group with * are statistically significantly (p<0.05) different from NS treated. Values of the group with superscript **are statistically significantly different from NS and chloroquine treated groups. Values of the group with superscript **are statistically significantly different from NS and chloroquine treated groups.

Antimalarial studies - Prophylactic test

	Tab	le 14: F	Table 15: Prophylactic e					
	S/N Treatment (mg/kg/day)		ment	Average Parasitaemia± SEM	% Prophylaxis	S/N	Trea	atment
			kg/day)				(mg	/kg/da
	1	NS	0.2 mL	8.40 ± 0.93	-	1	NS	0.2 ml
	2	MEL	500	0.20± 0.20*	97.62	2	HF	500
	3	MEL	250	3.25 ± 0.48*	61.31	3	HF	250
	4	MEL	125	2.20 ± 0.80*	73.81	4	HF	125
	5	PM	5	0.40 ± 0.24	95.24	5	PM	5

Table 15	: Proph	ylactic effec	t of HF fraction of <i>OK</i> against <i>P. berghei be</i>	f OK against P. berghei berghei infection in mice		
S/N	Treatment		Average Parasitaemia± SEM	% Prophylaxis		
(mg/kg/day)		/kg/day)		$\triangle \triangle \triangle \triangle \triangle \triangle$		
1	NS	0.2 mL	8.40 ± 0.93	* X-X X)		
2	HF	500	2.20 ± 1.02*	73.81		
3	HF	250	5.40 ± 1.57**	35.71		
4	HF	125	1.20 ± 0.58*	85.71		
5	PM	5	0.40 ± 0.24	95.24		

a	ble 16:	Prophylactic effect of	f DCM fraction of <i>OK</i> against <i>P. berghei b</i>	oerghei infection in mic	
	S/N	Treatment	Average Parasitaemia± SEM	% Prophylaxis	
		(mg/kg/day)			
	1	NS 0.2 mL	8.40 ± 0.93	-	
	2	DCM 500	4.40 ± 1.63***	47.62	
	3	DCM 250	1.25 ± 0.95*	85.12	
	4	DCM 125	0.00 ± 0.00 *	100.00	
	5	PM 5	0.40 ± 0.24	95.24	

				N. J.A. J.	
Table 1	7: Pro	phylactic e	ffect of EF fraction of <i>OK</i> against <i>P. berghei be</i>	erghei infection in mice	
S/N	Trea	atment	Average Parasitaemia± SEM	% Prophylaxis	
	(mg	(/kg/day)	-		
1	NS	0.2 mL	8.40 ± 0.93	-	
2	EF	500	1.75 ± 0.63*	79.17	
3	EF	250	1.75 ± 1.03*	79.17	
4	EF	125	0.80 ± 0.58 *	90.48	
5	PM	5	0.40 ± 0.24	95.24	

Table	Table 18: Curative effect of BF fraction of <i>OK</i> against <i>P. berghei</i> berghei infection in mice					
S/N	Treatment		Average Parasitaemia± SEM	% Prophylaxis		
	(mg	/kg/day)	-			
1	NS	0.2 mL	8.40 ± 0.93	-		
2	BF	500	3.00 ± 1.73*	64.29		
3	BF	250	2.00 ± 0.91*	76.19		
4	BF	125	2.00 ± 0.77*	76.19		
5	PM	5	0.40 ± 0.24	95.24		

Key: NS=Normal saline; MEL= Methanol leaf extract of OK; HF=n-Hexane fraction; DCM=Dichloromethane fraction; BF=Ethylacetate fraction; BF=n-Butanol fraction; PM= Pyrimethamine; OK= Ochna kibbiensis. Values were expressed as Mean±SEM (n=5). Values of the group with *are statistically significantly (p<0.05) different from NS treated. Values of the group with superscript **are statistically significantly different from NS and chloroquine treated groups

Conclusion

- The findings of this study indicated that;
- The leaves of the plant O. kibbiensis were found to be relatively safe based on the LD_{50} values.
- The plant have demonstrated significant (p<0.05) antimalarial activity with suppressive, curative and prophylactic effects.
- In addition, isolation and characterization of the bioactive constituents from the most active fractions is ongoing in our laboratory.

Some references

- Abdullahi, M. I., Haruna, A.K., Musa, M.A., Alhassan, M.A., Umar, A., Yusuf, A.J., Uba, A., Ibrahim, Z.Y.Y. (2015). Preliminary phytochemical and antimicrobial evaluation of the methanolic leaf extract of *Ochna Kib*biensis Hutz and Dalz (*Ochnaceae*). *Journal of Chemical and Pharmaceutical Research*. 7: 626-631.
- Abdullahi, M.I., Musa, A.M., Nasir, T., Magaji, M.G., Yusuf, A.J., Iliya, I. (2016). Anti-proliferative study and isolation of ochnaflavone from the ethyl acetate-soluble fraction of *Ochna kibbiensis* Hutch and Dalziel *Natural Product Research*. Pp 288-291.
- Burkill, H.M. (1985). The useful plants of west tropical Africa, Royal Botanic Gardens, Kew. Richmond, United Kingdom. Vol. 4: 445.
- Lorke, D. (1983). A new Approach to Practical Acute Toxicity Testing. *Archives of Toxicology.* 54: 275-287.

Acknowledgement & Supports

- Malam Hamza Muhammad from Department of Pharmaceutical & Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria for his assistance in conducting the study.
- Mr. Yusuf Sani from the Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria for his technical assistance.
- The Support and Funding of the Tertiary Education Trust Fund (TETFund) is gratefully acknowledged (Grant No. TETFUND/DR&D/CE/UNIV/SOKOTO/RP/VOL.1)

