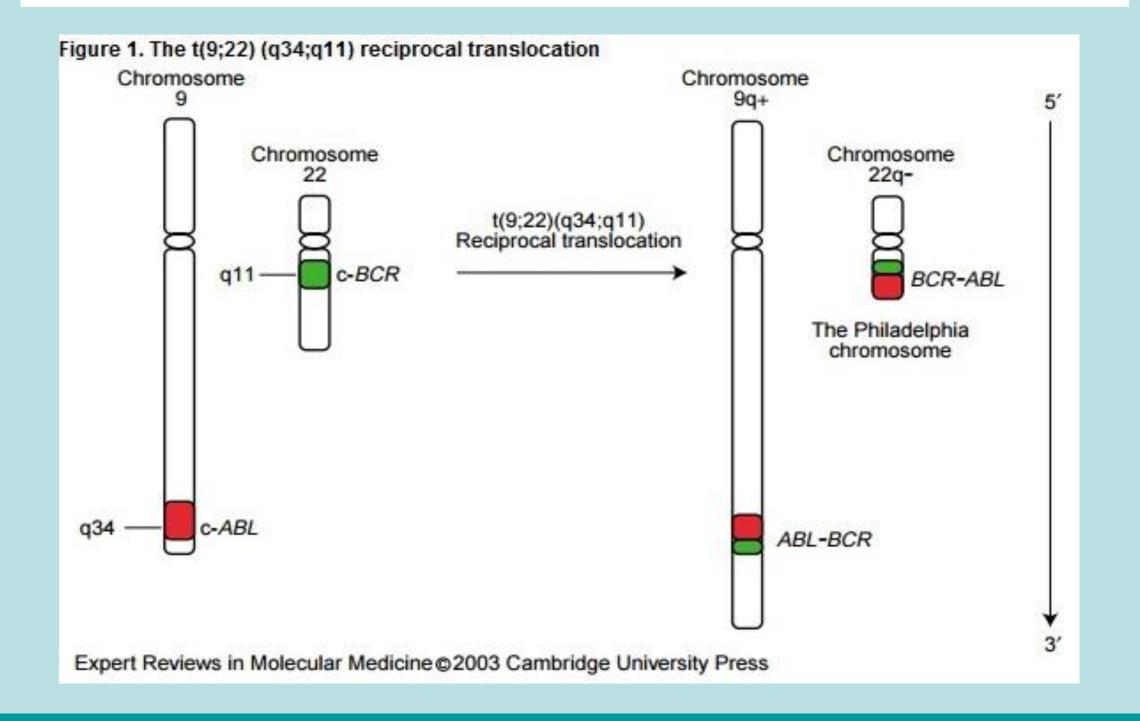
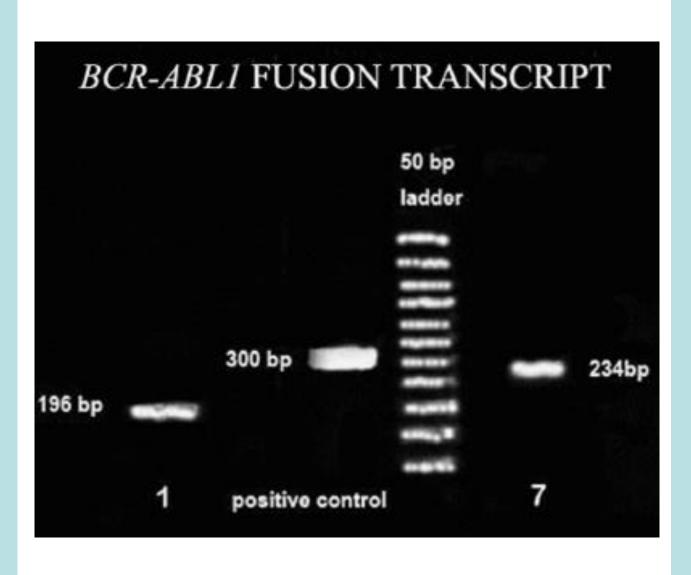
Frequency of BCR-ABL fusion transcripts (e1a2, b2a2 and b3a2) by RT-PCR

in Guatemalan patients with acute lymphoblastic leukemia type B (B-ALL) and chronic myeloid leukemia (CML)


Oneida Morales¹, Claudia Carranza², Federico Nave ¹, Patricia Saravia ¹

¹Escuela de Química Biológica, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala; ²Instituto de Investigación y Educación para las Enfermedades Genéticas y Metabólicas (INVEGEM)

BACKGROUND


Chromosomal translocations in most leukemias result in fusion genes which produce mRNAs that encode chimeric proteins with different structural and functional properties than the normal constitutional proteins. The best-known case is that of the chimeric gene *BCR-ABL*1 (Philadelphia chromosome), which results from the translocation t(9;22)(q34;q11).

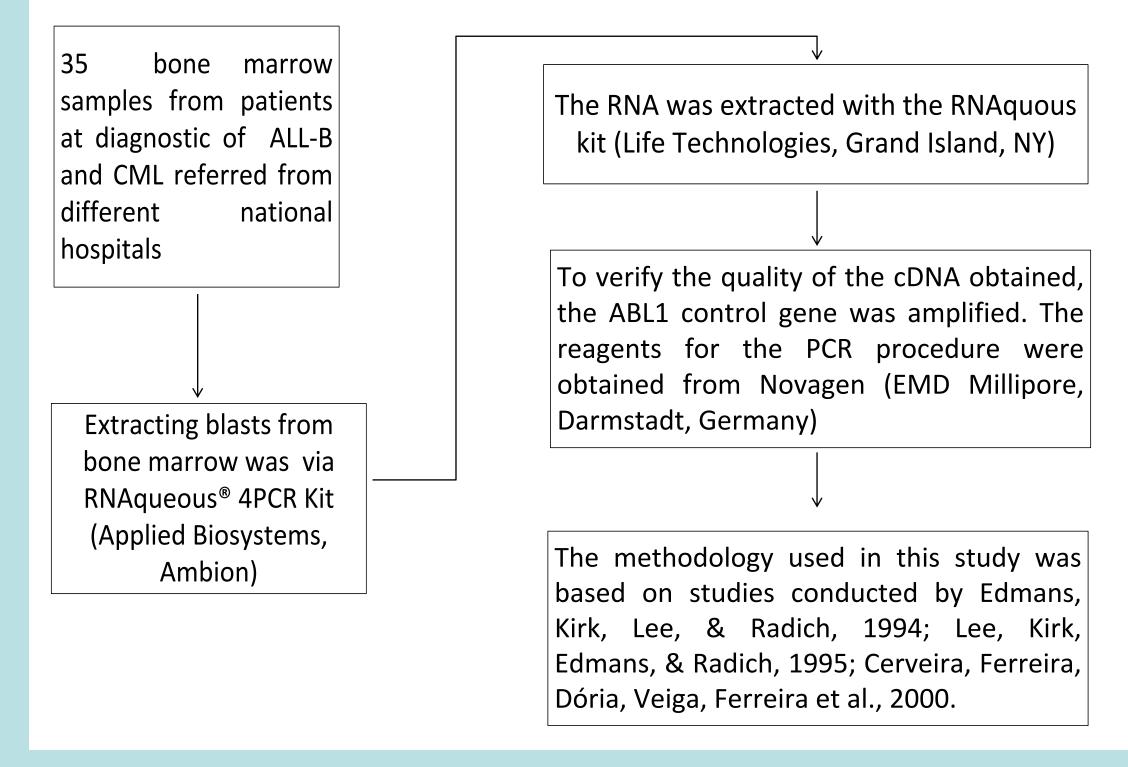
The genes involved in this translocation are the ABL1 gene on chromosome 9 and the BCR gene on chromosome 22. The 5′ portion of the BCR gene is fused to the 3′ portion of the ABL1 gene, resulting in the chimeric gene *BCR-ABL1*. Depending on the point of breakage of the translocation, different transcripts may result producing PCR products of somewhat different lengths. These transcripts are present in acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML). It has been shown that there is a relationship between the type of pathological transcript and clinical-demographic characteristics of leukemic patients.

OBJECTIVES

- Describe the frequency of fusion transcripts BCR-ABL in bone narrow samples from patients with ALL-B and CML
- Determinate the first genetic characterization of BCR-ABL in leukemic Guatemalan population
- Determine the relationship the between type pathological transcripts and expressed type associated leukemia with demographic characteristics count and platelet leukemic patients

METHODS

Type of study


Cross-sectional study

Sampling type

- Nonprobability sampling for convenience

Statistical analysis

The analysis was carried out with univariate analysis for frequency distribution, percentages and crossing of variables of interest (gender, origin, age group, platelet count, white blood cell and hemoglobin) using contingency tables based on the type of leukemia and type of fusion transcript. The relationship between variables of interest were determined using the nonparametric Kruskall Wallis test and for pairwise comparisons was used the Mann Whitney test to establish the statistical significance between the data. Results with P <0.05 were considered statistically significant. The software used was *SPSS version* 14.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

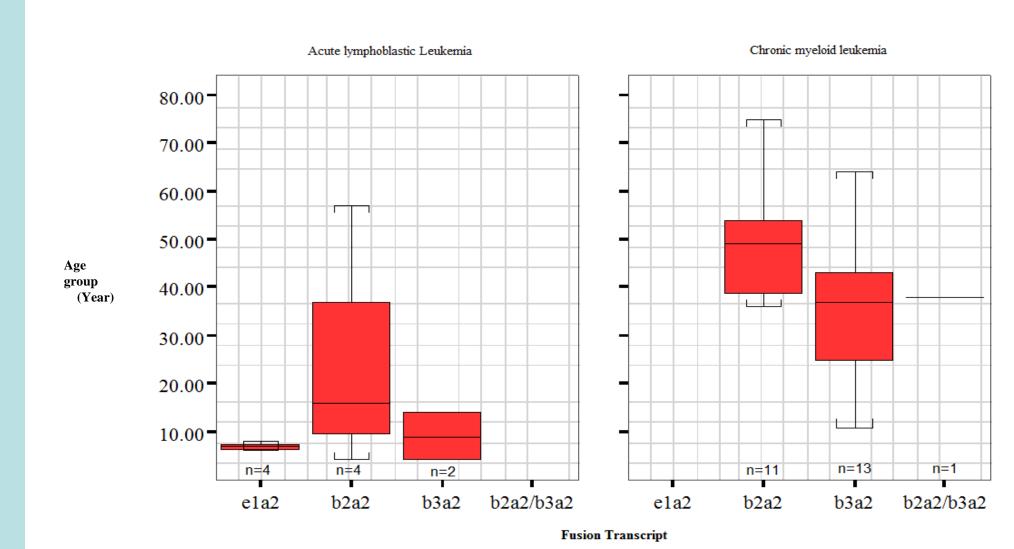
Distribution of clinical factors by the type of fusion transcript of BCR-ABL in patients with ALL-B and CML

Fusion transcript	e1a2	b2a2	b3a2	P♠	
Total (%)	4 (11%)	15 (43%)	15 (43%)	0.0041	
	♦e1a2 y b2a2 P= 0.010¹	♦b2a2 y b3a2 P= 0.369 ²	♦e1a2 y b3a2 P= 0.001¹		
Gender					
Female (F)	2 (5.5%)	6 (17%)	4 (11.5%)	0.612^{2}	
Male (M)	2 (5.5%)	9 (26%)	11(31.6%)		
Age Group	♦e1a2 y b2a2 P= 0.028¹ ♦b2a2 y b3a2 P= 0.221² ♦e1a2 y b3a2 P= 0.009		♦e1a2 y b3a2 P= 0.009 ¹		
Mean ± SD	7 ± 0.82	40 ± 24.24	32 ± 15.46 34 (4-64)	0.0221	
Range	7 (6-8)	46 (4-81)			
Coefficient of variation	0.12	0.61	0.48		
telet count (150,000-400,000 cel/mm³)		♦b2a2 y b3a2 P= 0.604 ²	♦e1a2 y b3a2 P= 0.004 ¹		
Mean ± SD	8,895 ± 6,641	199,806 ± 163,437	162,267 ± 91,257		
Range	7,970 (2,000-18,000)	184,000 (1,069-516,000)	143,000 (10,000-316,000)	0.012 ¹	
Q1 (25)	3,415	430,000	109,000		
Q2 (50)	7,970	184,000	143,000		
Q3 (75)	15,570	342,000	234,000		
Coefficient of variation	0.74	0.82	0.56		
White blood cell count (4,500-10,500 cel/mm³)					
Mean ± SD	119,423 ± 37,043	124,073 ± 158,099 60,310 (1,050-567,740)	22,384 ± 48,534 6,170 (1,500-185,000)	0.079 ²	
Range	124,845 (73,000-155,000)				
Coefficient of variation	0.31	1.27	2.17		
Hemoglobin (F=12-16 y M=14-18 g/dl)					
Mean ± SD	8.20 ± 4.00	9.95 ± 2.85	11.96 ± 3.36 11.6 (5.8-19.1)	0.135 ²	
Range	8.95 (2.7-12.2)	10.3 (5.6-15.8)			
Coefficient of variation	0.49	0.29	0.28		

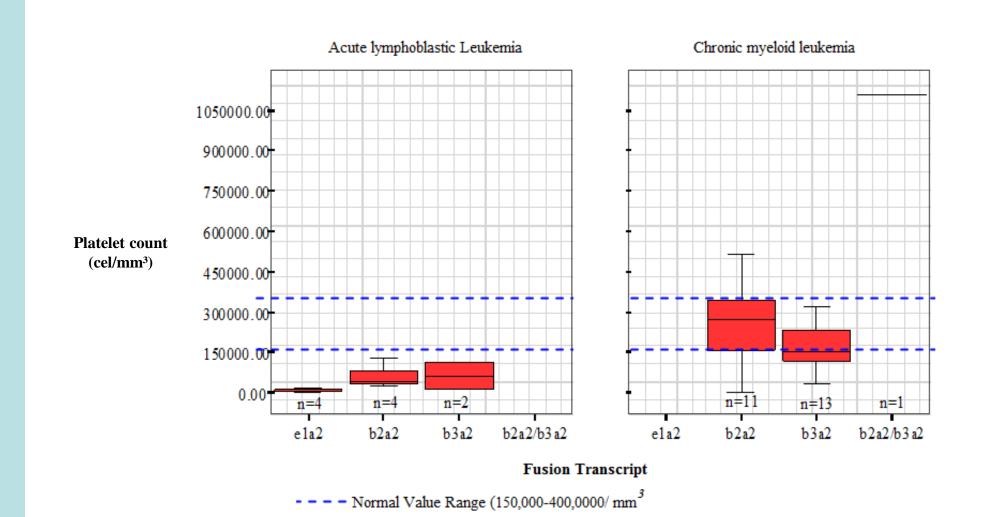
Distribution of the type of fusion transcript BCR-ABL in patients with ALL-B and CML

Leukemia	ALL-B		CML		Total (%)	
Fusion Transcript	n* (M/F)	M/F %	n* (M/F)	M/F %	n* (%)	
e1a2	4 (2/2)	5.5/5.5	0 (0/0)	0/0	4 (11%)	
b2a2	4 (4/0)	12/0	11 (5/6)	14/17	15 (43%)	
b3a2	2 (1/1)	2.9/2.9	13(10/3)	28.7/8.6	15 (43%)	
b2a2/b3a2	0 (0/0)	0/0	1 (1/0)	3/0	1 (3%)	
Total	10 (7/3)	20.4/8.4	25(16/9)	45.7/25.6	35 (100%)	
= Case number , M= Male, F = Female *						

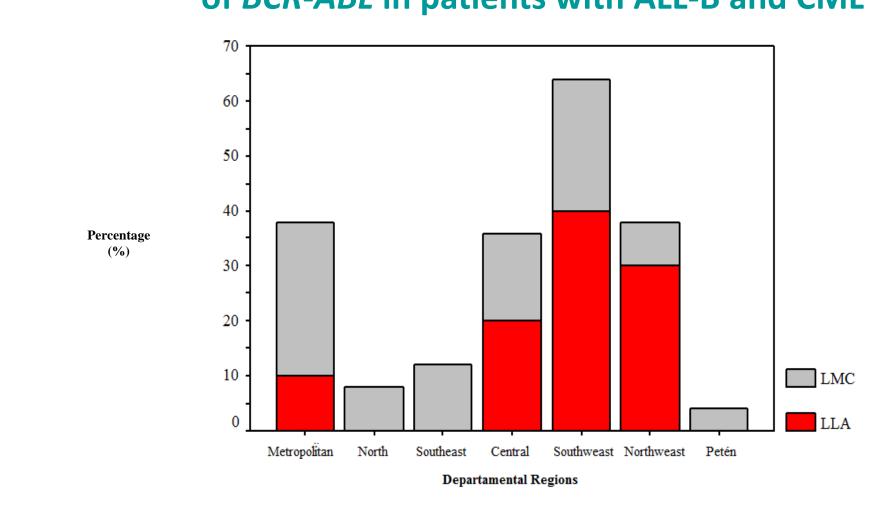
CONCLUSIONS


The frequency of expression of fusion transcripts of BCR-ABL gene in 35 bone marrow samples from patients with CML and ALL-B corresponds to a low frequency for e1a2 transcript (11%) with respect to the frequency of the b2a2 transcript (43%) and b3a2 (43%) and with a frequency of 3% co-expression represented by b2a2/b3a2 transcripts.

The frequency of expression of *BCR-ABL* fusion transcripts in CML patients was very similar to several studies conducted in Latin American countries whose population is mainly mestizo (b2a2 and b3a2 = 40-50%) and differs from that reported in Caucasian populations and Asian in which significant frequency differences between the b2a2 transcript expression (30-40%) compared with b3a2 expression (50-60%) are reported. This suggests that the Guatemalan population expressing leukemic fusion transcripts of *BCR-ABL* gene has a different biological behavior compared to that reported in Asian and Caucasian population product of genetic variability among populations as a possible explanation for the differences observed in this study.


The age group which corresponds to the expression of different chimeric gene transcripts BCR-ABL in CML patients (b2a2 and b3a2) are in the age range 30 to 40 years whereas patients with LAB (e1a2) belong to the ages of 5 to 10 years.

The presence of fusion transcripts of the chimeric BCR-ABL gene increases the thrombopoietic activity in patients with CML.


Distribution of age group by the type of fusion transcript of *BCR-ABL* in patients with ALL-B and CML

Distribution of the platelet count based on the type of fusion transcript of *BCR-ABL* in patients with ALL-B and CML

Distribution of geographic region by the type of fusion transcript of *BCR-ABL* in patients with ALL-B and CML

ACKNOWLEDGMENTS

Support for this research was provided by The National Fund for Science and Technology (FODECYT), National Secretary of Science and Technology (SENACYT) (grant FODECYT48-2009), and Rozas-Botran Foundation, Guatemala

CONTACT

Oneida Morales <u>onemperatriz@yahoo.com.mx</u>