

Quantification of Polar Metabolites in Urine using Automated Parallel Derivatization and LC-SWATH-MS

WP 571

Guenter Boehm Maria Cifuentes Girard² David Ruskic ² Renzo Picenoni Gérard Hopfgartner 2

. CTC Analytics AG Zwingen, Switzerland

2. University of Geneva Life Sciences Mass Spectrometry Geneva Switzerland

References

Zhao, S., et al., Development of High-Performance Chemical Isotope Labeling LC-MS for Profiling the Carbonyl Submetabolome. Anal. Chem., 2017. 89(12): p. 6758-6765.

Overview

- Automated parallel derivatization combined with column switching improves reaction kinetics control and reproducibility for quantitative analysis.
- QUAL/QUANT SWATH/MS data analysis using ¹³C labelled derivatization reagents in a single LC-MS run.
- Single point calibration using ¹²C/¹³C-DnsCl/DnsHz differential isotope labelling for quantitation at precursor or fragment level.

Introduction

Quantitative metabolomics bottleneck lies in the availability of isotopic labelled standard for accurate quantification. In addition to improved MS sensitivity and LC retention, chemical derivatization with ¹³C labelled derivatives has proven to be suitable workflow to address this issue. LC-SWATH-MS acquisition allows quantification and identification that generate valuable additional sample information of precursor, fragment ions and chemically related analytes within the same analysis. Despite multiple derivatization methods were reported for LC-MS, no derivatization reagents are available for profiling multifunctional metabolites in a single analytical run. We described a parallel derivatization ¹²C/¹³C labelled approach to quantify polar metabolites including amines, phenols, ketones and aldehydes in human urine using LC-SWATH/MS. These compounds could be derivatized in less than 15 minutes with gain in sensitivity of up to 100 times due to the increased hydrophobicity and presence of basic heteroatoms

Automation was found to be essential to allow reproducible derivatization and overlapping the sample preparation with the LC run time to increased the throughput. In addition, column-switching using a C18 trapping column was found to be critical to remove the excess of reagents and salts which can negatively affect the ionization efficiency and chromatographic performance. Quantification is highlighted in the use of analogous ¹³C₂-labeled Dansyl-Cl/Dansyl-Hz for derivatization. LC- SWATH/MS, collects all information on precursor ions and fragments in a single run, which enables to take advantage of chemical tagging at MS2 level. The ¹³C labelling enabled quantification for almost any analyte by selecting proper product ions from specific SWATH windows post-acquisition. Selective screening of specific tag-ion fragments $(^{12}\text{C} \text{ m/z} 171 \text{ and } ^{13}\text{C} \text{ m/z} 173)$ for all derivatized analytes can be performed. The method could be applied for the quantification of 40 different metabolites in human urine from a clinical investigation.

Analytes

40 Androstenedione

y						
No	Compound	Molecular Weight	Derivative	Precursor ion of	Tag-fragment ion of	Select fragment of
		(g/mol)		derivative (Da)	derivative (Da)	derivative (Da)
1	L-Glycine	75.07	Dansyl-Cl	309.0901	171.1023	294.0672
2	Pyruvic acid	88.06	Dansyl-Hz	336.1011	171.1023	240.2319
3	L-Alanine	89.09	Dansyl-Cl	323.1063	171.1023	308.0833
4	L-Tyrosine	181.2	Dansyl-Cl	415.1313	171.1023	247.0540
5	2-aminobutyric acid	103.06	Dansyl-Cl	337.1211	171.1023	334.1224
6	L-valine	117.2	Dansyl-Cl	351.1377	171.1023	303.1166
7	L-threonine	119.1	Dansyl-Cl	353.1165	171.1023	338.0923
8	L-tryptophan	204.23	Dansyl-Cl	438.1475	171.1023	130.0650
9	L-phenylalanine	165.2	Dansyl-Cl	399.1369	171.1023	120.0806
10	S-phenyl-L-cysteine	197.05	Dansyl-Cl	431.1094	171.1023	354.0789
11	5-aminolevulinic acid	131.06	Dansyl-Hz	365.1530	171.1023	325.1792
12	Trans-4-hydroxy-L-proline	131.06	Dansyl-Cl	365.1166	171.1023	343.1904
13	L-asparagine	132.05	Dansyl-Cl	366.1120	171.1023	319.1475
14	L-carnosine	226.23	Dansyl-Cl	460.1653	171.1023	303.1162
15	Acetaminophen	151.17	Dansyl-Cl	385.1217	171.1023	321.1600
16	2,4-Dihydroxybenzoic acid	154.03	Dansyl-Cl	388.0849	171.1023	264.1248
17	4-hydroxybenzoic acid	138.03	Dansyl-Cl	372.0898	171.1023	289.1001
18	L-lysine	146.20	Dansyl-Cl	613.2125	171.1023	317.1316
19	Vanillic acid	168.04	Dansyl-Cl	402.0999	171.1023	338.1385
20	4-hydroxyphenylpyruvic acid	180.16	Dansyl-Hz	414.1006	171.1023	383.1822
21	L-histidine	155.20	Dansyl-Cl	389.1278	171.1023	343.1216
22	L-arginine	174.20	Dansyl-Cl	408.1940	171.1023	234.0557
23	Oxoglutaric acid	147.02	Dansyl-Hz	394.1071	171.1023	217.1338
24	L-Glutamic acid	147.10	Dansyl-Cl	381.1108	171.1023	293.1041
25	Taurine	125.01	Dansyl-Cl	359.0731	171.1023	344.0498
26	Caffeic acid	180.04	Dansyl-Cl	648.1812	171.1023	369.1273
27	L-methionine	149.20	Dansyl-Cl	383.1091	171.1023	371.1407
28	L-serine	105.10	Dansyl-Cl	339.1006	171.1023	324.0784
29	Citrulline	175.10	Dansyl-Cl	409.1541	171.1023	338.1383
30	L-Aspartic acid	133.10	Dansyl-Cl	367.1216	171.1023	325.1794
31	L-proline	115.10	Dansyl-Cl	349.1219	171.1023	303.1166
32	Tyramine	137.18	Dansyl-Cl	604.1914	171.1023	370.1336
33	α-ketoisovaleric acid	116.05	Dansyl-Hz	364.1325	171.1023	121.0648
34	Daidzein	254.06	Dansyl-Cl	721.0873	171.1023	441.2958
35	Estradiol	272.38	Dansyl-Cl	506.2756	171.1023	427.2484
36	Ethinyl estradiol	296.41	Dansyl-Cl	530.3666	171.1023	452.2530
37	Estrone	270.37	Dansyl-Cl	504.2302	171.1023	426.2681
38	Testosterone	288.21	Dansyl-Hz	535.2294	171.1023	409.2354
39	L-Cystine	240.30	Dansyl-Cl	474.1132	171.1023	390.1002
	-		•			

Dansyl-Hz

Methods

Figure 1. Schematic representation of the Robotic Tool Changer (RTC) autosampler with hyphenation to two quaternary LPG pumps and MS QTOF instrument used for the automated parallel derivatization in combination with a column switching setup. Derivatization procedure and sample clean up (C18 trap column) overlapped with the LC run time. Pump P2 is used for analytical column conditioning and for backflush the trap after 15 min of the LC run. Pump P1 is the analytical pump running in gradient.

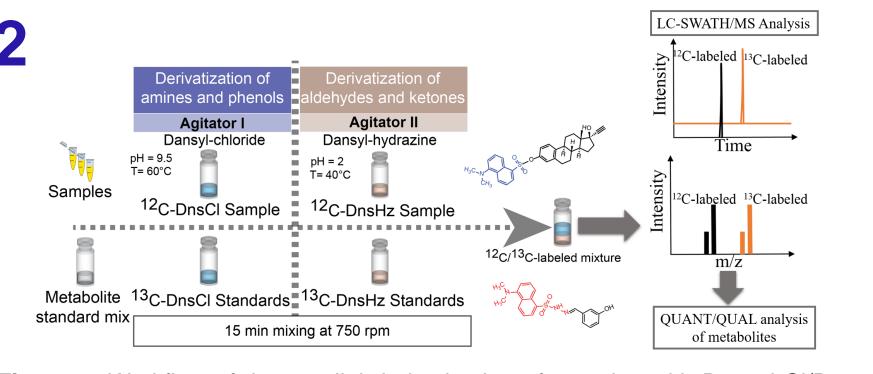


Figure 2. Workflow of the parallel derivatization of samples with Dansyl-Cl/Dansyl-Hz and the metabolite standard mix with (13C) labelled Dansyl-Cl/ Dansyl-Hz for

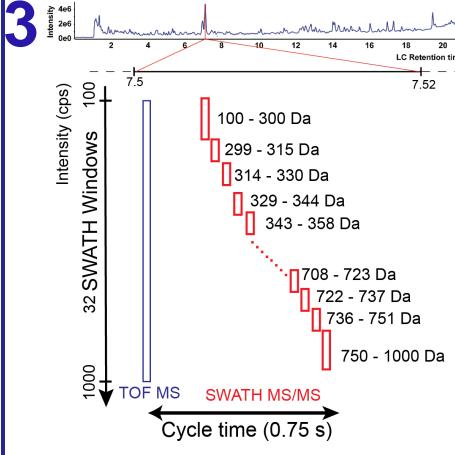


Figure 3. SWATH data independent acquisition method. A TOF MS experiment from 100-1000 Da in addition to 32 Q1 SWATH MS windows. The windows size were optimized to 15 units each for a medium mass range due to the mass shift resulting from metabolite derivatization. The collision energy of 40 eV with an energy spread of 30 eV was used.

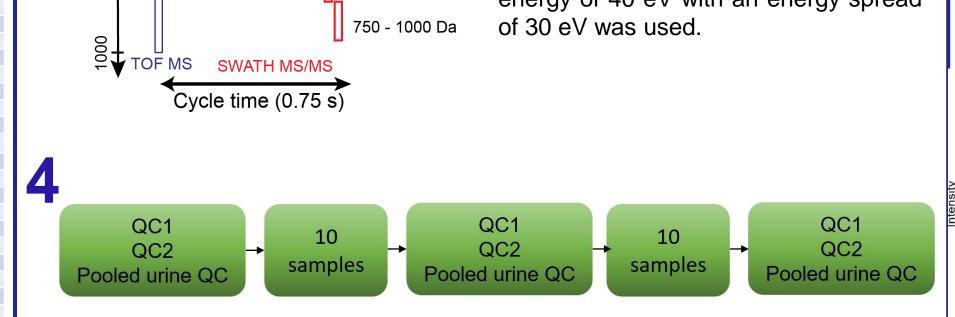


Figure 4. Sequence of analysis of urine samples from prostate cancer patients Samples were derivatized and analyzed on triplicate using 12C-Dansyl-Cl/Dansyl-Hz and a mix of 40 metabolite standards with ¹³C₂-Dansyl-Cl/ Dansyl-Hz for quantification.

Results Method performance

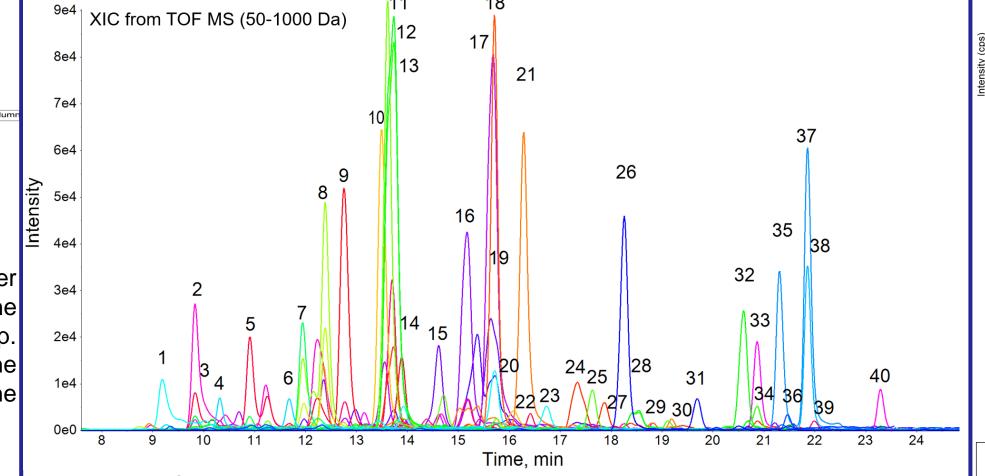


Figure 5. XIC of precursor ions of 40 analytes after automated parallel derivatization using 12C/13C-Dansyl-Cl/Dansyl-Hz of a pooled urine sample for QUAL/QUANT analysis.

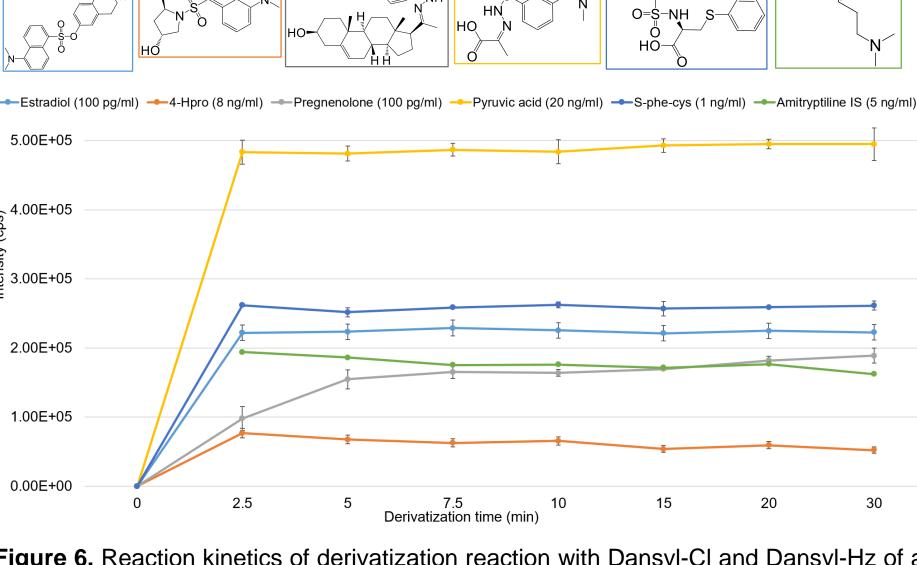


Figure 6. Reaction kinetics of derivatization reaction with Dansyl-Cl and Dansyl-Hz of a standard mix of 5 compounds at endogenous levels and amitriptyline as internal standard. Data show that both reaction are completed at 5 minutes and are stable across the 30 minutes of reaction.

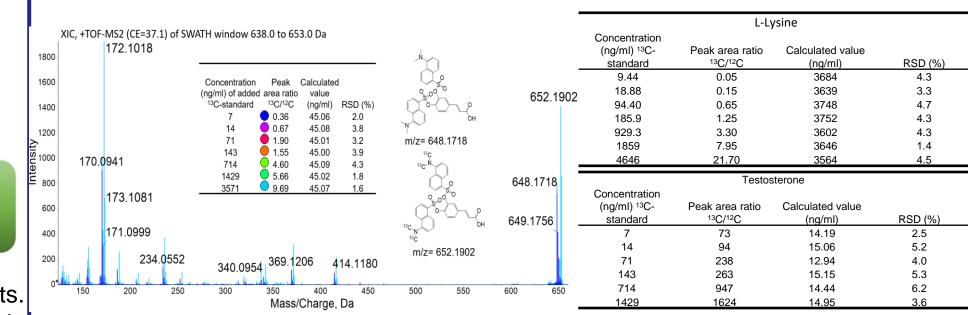


Figure 7. An example of HR-SRM/MS spectrum for illustrate the linear response of different endogenous metabolites in urine to the addition of increasing concentration of To facilitate post-acquisition identification of metabolites chemically related with the ¹³C-standards metabolites for further quantification using single point calibration at MS1 help of tag fragment ions. or MS2 level.

Analysis of Clinical samples

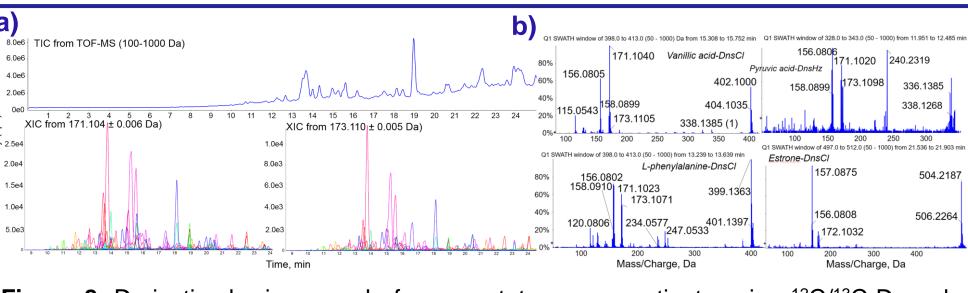
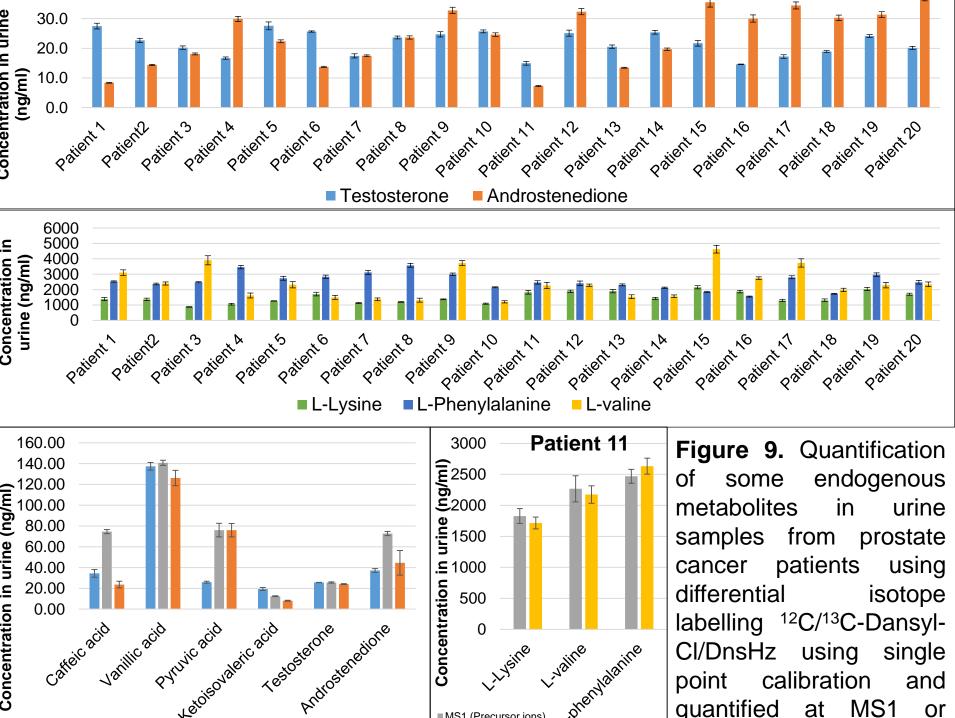



Figure 8. Derivatized urine sample from prostate cancer patients using ¹²C/¹³C-Dansyl-CI/Dansyl-Hz. (a)TIC and overlayed XICs from all SWATH Q1 windows of tag-fragment m/z 171 (left) and m/z 173 (right) that represent common fragments of derivatized metabolites that belong to same chemical group located in same SWATH windows and retention what eases SWATH data processing and metabolite profiling. (b) HR-SRM/MS spectrum of derivatized vanillic acid, pyruvic acid, L-phenylalanine and estrone identified and quantified in the sample using differential isotope labelling 12C/13C of precursor ions (MS1 level) or fragments ions (MS2 level).

Conclusions

■ Patient 5
■ Patient 11
■ Patient 17

Automated parallel derivatization combined with SWATH/MS acquisition enables:

MS2 level

Reproducible quantification of multifunctional metabolites (aldehydes, ketones, amines and phenols) during a single LC run time.

QUAL/QUANT analysis of metabolites in biological samples using analogous ¹³C labeled derivatization reagents and MS1 and MS2 level.

To generate valuable additional sample information of precursor, fragment ions and chemically related analytes within same batch.