Lifetime measurement in ¹⁰³Pd

A. Sharma¹, S. Muralithar², R P Singh², Indu Bala², S. S. Bhattacharjee², Ritika Garg², R. K. Gurjar², S. S. Tiwary³, Neelam⁴, S. Das⁵, S. Samanta⁵, S. S. Ghugre⁵, P. V. Madhusudhana Rao⁶, R. Palit⁷, S. K. Dhiman¹ and U. Garg⁸.

¹Department of Physics, Himachal Pradesh University, Shimla - 171005, India.

²Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi - 110067, India.

³Department of Physics, Institute of Science, Banaras Hindu University, Varanasi - 221005, India.

⁴Department of Physics and Astrophysics, University of Delhi, New Delhi - 110007, India.

⁵UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata - 700098, India.

⁶Department of Nuclear Physics, Andhra University, Visakhapatnam - 530003, India.

⁷Deptartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India.

⁸Department of Physics, University of Notre Dame, Notre Dame, Indiana - 46556, USA.

The structure of nuclei reveals intriguing phenomena even at low and moderate spin regime such as vibrations and rotations built upon prolate deformed shape. Different phenomenon observed in the yrast band of nuclei in $A\approx100$ are band termination, collective rotational band, and single particle structure [1-3]. In many of these nuclei, with modest deformation, magnetic and anti-magnetic rotational bands have also been reported. Lifetime measurement of excited nuclear states gives an insight into the origins of the level structure and helps in understanding the underlying shapes and symmetries in the nucleus. In 101,105 Pd nuclei [4, 5] the band based on $vh_{11/2}$ was found to exhibit AMR behaviour based on lifetime measurements. A band based on $vh_{11/2}$ is also established in $vh_{11/2}$ however, AMR behaviour could not be confirmed in this band due to lack of lifetime information. In this work the main objective was thus, to probe this band for AMR phenomena by measuring the lifetime of states in this band.

The excited states of ¹⁰³Pd were populated via fusion evaporation reaction, ⁹⁴Zr(¹³C, 4n) at beam energy of 55 MeV from 15UD pelletron accelerator based at Inter University Accelerator Centre (IUAC), New Delhi. Coincidence γ rays in two and higher fold were detected using Indian National Gamma array (INGA) [6]. Offline analysis is being done using CANDLE, INGASORT and RADWARE computer codes. The lifetime values are measured using the LINESHAPE Program [7]. Extracting lifetimes of the excited nuclear states of ¹⁰³Pd using Doppler shifted lineshapes will be reported in the workshop.

References:-

- [1] P. H. Regan et al. J Phys. G, 19:L157, 1993.
- [2] B. M. Nyakó et al. Phys. Rev. C, 60:024307, 1999.
- [3] D. Jerrestam et al. Nucl. Phys. A, 557:411, 1993.
- [4] M. Sugawara et al. Phys. Rev. C, 92:024309, 2015.
- [5] N. Rather et al. In Proceedings of the DAE Symp. on Nucl. Phys., volume 59, page 108, 2014.
- [6] S. Muralithar et al. Nucl. Instrum. Meth. Phys. Res. A, 622:281, 2010.
- [7] J. C. Wells and N. R. Johnson. Report No. ORNL-6689, 44, 1991.