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0. Introduction

Euler’s formula says that for any convex polyhedron the alternating sum

n0 − n1 + n2, (1)

is equal to 2, where the numbers ni are respectively the number of vertices n0, the number of edges n1
and the number of triangles n2 of the polyhedron. There are many controversies about the paternity of the 
formula, also about who gave the first correct proof.

In section 1, we provide information about the history of the formula as well as about the first topological 
proof given by Cauchy. Some authors criticize Cauchy’s proof, saying that the proof needs deep topological 
results that were proved after Cauchy’s time: “Não se pode, portanto, esperar obter uma demonstração 
elementar do Teorema de Euler, com a hipótese de que o poliedro é homeomorfo a uma esfera, como fazem 
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Hilbert-Cohn Vossen e Courant-Robbins” (Lima, [26]).1 Notice that the proof provided by Hilbert-Cohn 
Vossen [18] and Courant-Robbins [6] is the one of Cauchy.

In section 2, we provide an elementary proof which shows that only with a lifting technique and the use 
of sub-triangulations, Cauchy’s proof works without using any other result. More precisely, considering a 
triangulated polygon in the plane, with possible identifications of the simplices on its boundary, we prove 
that the alternating sum (1) of the polygon is equal to the one of its boundary plus 1 (Theorem 2.1). The idea 
of our proof is, starting from the hole formed by the removal of a simplex, to extend the hole by successive 
puddles. The process is illustrated by the construction of a suitable pyramid. A direct consequence of the 
theorem is an elementary proof of Euler’s formula using only Cauchy’s method.

As applications of our Theorem 2.1, in section 3, we also use these tools to prove that for a triangulable 
surface S like the torus, the projective plane, the Klein bottle and even for the pinched torus, the alternating 
sum (1) does not depend on the triangulation of the surface. To be completely honest, for applications (other 
than the sphere) in section 3, we also use the idea of “cutting” surfaces that, in general, was introduced by 
Oswald Veblen in a seminar in 1915 (see [1]). Of course, one can ask why we do not apply Theorem 2.1
and the same reasoning to all (smooth) orientable and non-orientable surfaces. The reason is very simple: 
we want to provide proofs that it was possible to do at the time of Cauchy. It is only in 1925 that T. Radó 
[31] proved the triangulation theorem for surfaces, that was more or less assumed in Cauchy’s time. The 
classification theorem for compact surfaces and the representation by the “normal” form was proved for the 
first time in a rigorous way by H.R. Brahana [1] (1921). It is clear that using our Theorem 2.1 and the 
representation of surfaces under the normal form, we immediately obtain the Euler-Poincaré characteristic 
of any compact surface. However, that is like a dog biting his own tail. That it is the reason we do not 
present the result for surfaces in general but only what is possible to do with Cauchy’s method for some 
elementary surfaces.

The first author had financial support of FAPESP (process UNESP-FAPESP number 2015/06697-9).

1. History

1.1. Before Cauchy

The name “Euler’s formula” comes from an announcement of Leonhard Euler in November 14th of 1750 
in a letter to his friend Goldbach [12] of the following result:

Theorem 1.1. Let K be a convex polyhedron, with n0 vertices, n1 edges and n2 two-dimensional polygons, 
then

n0 − n1 + n2 = 2. (2)

There are many different possible definitions of polyhedra. The discussion concerns the dimension of a 
polyhedron: Is a polyhedron a solid object of dimension three or only its surface? In this paper, we call 
“polyhedron” the three dimensional solid figure. A polyhedron is a figure constructed by polygons in such 
a way that each segment is the common face of exactly two 2-dimensional polygons and each vertex is the 
common face of at least three segments (see [32], Chapter 2 for discussion).

There are many questions and controversies about Euler’s formula. Here, let us discuss the two following 
questions: Was Euler the first mathematician stating the formula? Who provided the first proof of the 
formula?

Let us discuss the first question: Who was the first to state the formula?

1 Therefore, we cannot expect to obtain an elementary proof of Euler’s theorem, with the hypothesis that the polyhedron is 
homeomorphic to a sphere, as Hilbert-Cohn Vossen and Courant-Robbins did.
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Fig. 1. Euler’s proof: Successive elimination of a vertex as well as the pyramid of which it is the vertex.

Some authors (see [15], §3.12; [25], p. 90) write that it is possible that Archimedes (∼ 287 AC, ∼ 212 
AC) already knew the formula. Some authors say that the formula was known to Descartes (1596 – 1650). 
In fact, Descartes, in a manuscript [10], “De solidorum elementis”, proved the following result:

Theorem 1.2. The sum of the angles of all the 2-dimensional polygons of a convex polyhedron is equal to 
2(n0 − 2)π.

Proof that “formula (2) is equivalent to Theorem 1.2”. Let us denote by i = 1, . . . , n2 the 2-dimensional 
faces of a convex polyhedron. For each face i, let us denote by ki the number of vertices, which is also the 
number of edges of the face. We use, for each face, the following property: In a convex polygon with ki
edges, the sum of all the angles equals (ki − 2)π. Since each edge of the polyhedron appears in two faces of 
the polyhedron, then 

∑n2
i=1 ki = 2n1. Hence the sum of the angles of all the faces of the polyhedron equals ∑n2

i=1(ki − 2)π, that is (2n1 − 2n2)π. We obtain equivalence between Theorem 1.2 and formula (2). �
Descartes did not publish his manuscript. The original version of the manuscript suffered some accidents, 

in particular an immersion in the Seine river in Paris (see [16], [7]). A copy was rediscovered in 1860 among 
papers left by Leibnitz (1646-1716) and published by E. de Jonquières (see [8], [9]).

Some authors say that Descartes discovered the formula (2) as an application of his Theorem 1.2. This is 
a reason why sometimes the formula (2) is called the “Descartes-Euler formula”. Other authors, for example, 
Malkevich [27], affirmed that “Though Descartes did discover facts about 3-dimensional polyhedra that would 
have enabled him to deduce Euler’s formula, he did not take this extra step. With hindsight it is often difficult 
to see how a talented mathematician of an earlier era did not make a step forward that with today’s insights 
seems natural, however, it often happens.” However, we know that some of Descartes’ papers disappeared, 
so nobody can decide if Descartes knew the formula or not and the response to the first question is not 
known.

Let us now discuss the second question: Who was the first to provide a correct proof of formula (2)?
Two years after writing the formula, Euler provided a proof [13,14] which consisted of removing step by 

step each vertex of the polyhedron together with the pyramid of which it is the vertex.
Here we provide the example of the cube, copied from [32]: In Fig. 1 (b), one eliminates the vertex A

as well as the (white) pyramid of which A is a vertex. This operation does not change the alternating sum 
n0 − n1 + n2. In Fig. 1 (c) we perform the same process in order to eliminate the vertex B, and so on, till 
we obtain a tetrahedron. For the tetrahedron, one has n0 − n1 + n2 = 2, so we obtain the formula.

But this proof is not correct. In the book [32], Richeson provides a clear description of Euler’s proof, as 
well as the problems with the proof. According to Richeson, these problems were solved by Samelson and 
by Francese and Richardson ([33,17]).

The first correct proof was provided by Legendre [23] in the first edition of his book Éléments de Géométrie
(1794) (see [22] and also [32], Chapter 10 for a presentation of Legendre’s proof). Legendre’s argument was 
geometric in the same way as the proof of Descartes for Theorem 1.2. The only difference between Descartes’ 
argument and Legendre’s argument is that Descartes used the sphere presentation of the polyhedron (polar 
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polyhedron), while Legendre used the polyhedron itself. The passage of the polyhedron K (Legendre) to the 
polar polyhedron of K (Descartes) makes a permutation of n0 and n2, without modifying n1. This is the 
reason why some authors say that the proof of Euler’s formula (2) should be called “Descartes-Legendre’s 
proof”.

1.2. Cauchy’s time: Cauchy’s method - The first combinatorial and topological proof

In February of 1811, then 22 years old, Cauchy, who was already an engineer of Ponts et Chaussées, gave 
a talk entitled Recherches sur les polyèdres at the École Polytechnique, in Paris. This talk was published in 
1813 in the Journal de l’École Polytechnique ([3], [4]), as the first combinatorial and topological proof of 
Euler’s formula (2). This nice proof of Cauchy is included in many books (see, in particular, [32], Chapter 
12 for a presentation with comments).

The first step of Cauchy’s proof is to construct a planar representation.

Definition 1.3. A planar representation of a compact and without boundary surface S is a triple (K, K0, ϕ)
where:

(1) K is a 2-dimensional polygon in R2,
(2) the segments and vertices of the boundary of K are named and oriented with possible identifications. 

We denote by K0 the boundary of K with the given identifications,
(3) ϕ : |K| → S is a homeomorphism of the geometrical realization of K (taking care of identifications of 

the segments and vertices on the boundary K0) onto S.

It seems that Cauchy was the first person to use the idea of planar representation. We now present 
Cauchy’s proof.

Proof. Given a convex polyhedron K̂, we choose a 2-dimensional face P of the polyhedron. We remove this 
face. The first idea of Cauchy is to construct the associated planar representation K of the polyhedron 
with respect to the choice of the removed face. Lakatos [21] explains Cauchy’s construction as the following 
way: Put a camera above the removed face of the polyhedron, the planar representation will appear as the 
photograph. Notice that this idea of planar representation is similar to stereographic projection.

The hole formed by the removed face appears outside in the planar representation (see the blue part in 
Fig. 3).

The next step of Cauchy’s proof is to define a triangulation of K by a subdivision of all the polygons. 
Notice that, in the triangulating process, the alternating sum n0 − n1 + n2 does not change. The boundary 
of the hole consists of edges with the following property: Each edge is a face of a triangle that has only this 
edge as the common edge with the hole. For example, in Fig. 4 (a), the triangle σ has the edge τ as the 
common edge with the hole. The extension of the hole consists of two operations that we describe in what 
follows.

The first “operation I” consists of removing from the polyhedron K such a triangle σ together with its 
corresponding edge τ and then the hole is extended. Operation I do not change the sum n0 − n1 + n2, 
because n0 does not change while n1 and n2 decrease by 1.

When a situation like the one of Fig. 4 (b) appears, where one triangle (here σ) has two common edges τ1
and τ2 with the hole, we use “operation II” which consists of removing from the polyhedron K the triangle 
σ together with the two edges τ1 and τ2 and the vertex a that is the common vertex of τ1 and τ2. Then, 
the hole is extended.

Operation II also does not change the sum n0 − n1 + n2, since n0 and n2 decrease by 1 and n1 decreases 
by 2.

If we take care of keeping the boundary homeomorphic to a circle, then the hole is extended, using the 
two operations above, until we have only one triangle. In this triangle, we have n0−n1 +n2 = 3 −3 +1 = 1. 
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Fig. 2. Planar representation according to Cauchy. The pyramid with vertex O is supposed translucent.
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Fig. 3. The polygon K and its triangulation. The hole is in blue. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)
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Fig. 4. The two Cauchy operations.

Since we removed an (open) polygon at the beginning, we have already +1 in the sum n0 − n1 + n2. Hence 
for any convex polyhedron, we have n0 − n1 + n2 = +2. �
1.3. After Cauchy

Some authors, in particular Lakatos [21], criticize Cauchy’s proof. In his book (see [21], pages 11 and 
12), Lakatos provided a counter-example to Cauchy’s process. Here, we adapt Lakatos’ counter-example to 
our example in Fig. 2. Extending the hole by removing triangles in the indicated order in Fig. 5 (a), we use 
operations I and II of Cauchy until the ninth triangle. If we remove the tenth triangle, the hole disconnects 
the rest of the figure (see Fig. 5 (b)): The eleventh and twelfth triangles are no longer connected. Moreover, 
the boundary of the hole is no longer homeomorphic to a circle. Finally, we observe that if we remove the 
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Fig. 5. Removal order according to Lakatos.
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Fig. 6. The counter-examples of Lima: The hole B is in blue and the simplices to be removed are in red and pink.

tenth triangle, we do not remove any vertex, but we remove two edges and one triangle, therefore the sum 
n0 − n1 + n2 is not preserved.

Hence, we need to be very careful concerning the order of the removal of the triangles since it can happen 
that the hole disconnects the polyhedron K. Moreover, the boundary of the hole is no longer a curve 
homeomorphic to a circle because it has multiple points.

In the paper [26], Lima formalized the arguments of Lakatos and described the situation of Fig. 6. In 
figures (a), (b) and (c), the extension of the hole, obtained by the removal of the triangle σ from the 
polyhedron K, on the one hand, changes the sum n0 − n1 + n2 and, on the other hand, disconnects the 
polyhedron K. Lakatos’ example corresponds to the situation (a) in figure of Lima. In the examples of Lima, 
the boundary of the hole is a curve with multiple points.

We observe that figure (d) is also a case where the boundary is a curve having multiple points. However, 
the sum n0 − n1 + n2 is preserved when we remove the triangle σ from K since we remove two vertices x2
and x3, three edges (x1, x2), (x2, x3), (x1, x3) and the triangle σ. It seems that Lima did not realize that 
this case is admissible. The situation of figure (d) can be also used in the process of Cauchy. In this paper, 
we call this operation “operation III”. This operation appeared also in [5].

Note that with operation III, Lakatos’ example is no longer a counter-example: come back to Fig. 5 (a), 
after removing the ninth triangle, one can remove the twelfth triangle by operation II, then remove the 
tenth triangle by operation III. We have only the eleventh triangle for which n0 − n1 + n2 = +1 so we are 
done!

Some authors suggest a strategy to define an order of removal of the triangles that allows the use of 
Cauchy’s method to obtain the result. For example, Kirk [20] suggests the following strategy: “There are 
two important rules to follow when doing this. Firstly, we must always perform [Operation II] when it 
is possible to do so; if there is a choice between [Operation I] and [Operation II] we must always choose
[Operation II]. If we do not, the network may break up into separate pieces. Secondly, we must only remove 
faces one at a time.” We provide, in Fig. 7 (b), an example whose the process follows the rules of the 
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Fig. 7. A counter-example to the “strategy” suggested by Kirk. Triangles are removed in the order of numbers. The index I or II 
below each number means that the triangle is removed using the corresponding operation I or II, respectively. After removing the 
seventh triangle, the boundary of the hole is no longer homeomorphic to a circle.

strategy defined by Kirk but the process disconnects the polyhedron. So these rules are not sufficient. It is 
easy to build an example showing that they are not necessary.

The example provided in Fig. 7 is also a counter-example showing that even with operation III, Cauchy’s 
process does not work with the given order of removal. In fact, after removing the seventh triangle, we can 
continue untill the tenth triangle, but we cannot remove it because in that case we remove one vertex, three 
segments and one triangle. Notice that the vertices A and B do not belong to the hole.

After Cauchy, many authors proposed alternating proofs of Euler’s formula (2), using original arguments. 
See the site of Eppstein [11] containing 20 different proofs, using tools that appeared only after Cauchy’s 
time. In particular, some proofs use the Jordan Lemma (Jordan [19], 1866). In fact, we will see that Jordan 
curves will appear in the proof of our Theorem 2.1 as an artifact.

However, to our knowledge, no one has given a strategy for removing the triangles that allows only the 
use of Cauchy’s method and tools known in Cauchy’s time. That is the goal of our paper.

1.4. Generalization of the formula (2)

The formula (2) was extended by many authors, in particular by Lhuilier [24], first for orientable surfaces 
of genus g, as follows:

n0 − n1 + n2 = 2 − 2g. (1.4)

In the non-orientable case, the formula is given by (see [28]):

n0 − n1 + n2 = 2 − g.

The general result was provided by Poincaré [29,30] who proved that, for any triangulation of a polyhedron 
X of dimension k, where ni is the number of simplices of dimension i, the sum

χ(X) =
k∑

i=0
(−1)ini (3)

does not depend on the triangulation of X. This sum is called the Euler-Poincaré characteristic of X.
Due to the dimension convention for polyhedra in section 1.1, “Euler’s formula” would be better written 

as the Euler-Poincaré characteristic of the convex 3-dimensional polyhedral in the form

n0 − n1 + n2 − n3 = +1.

Of course, n3 is +1 anyway, but this form of Euler’s formula seems more suitable.
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Fig. 9. Planar representations of the torus, the projective plane and the Klein bottle.

2. Cauchy’s method in the proof of Euler’s formula

The classical planar representations of surfaces such as the sphere, the torus, the projective plane and 
the Klein bottle are examples of the following situation: The surface is homeomorphic to the geometric 
representation of a polygon K, itself homeomorphic to a disc D, such that there are possible identifications 
of simplices on the boundary K0. (See Figs. 8 and 9.)

In this section, we prove the following theorem using only Cauchy’s method (section 1.2) and sub-
triangulations:

Theorem 2.1. Let K be a triangulated polygon in R2, homeomorphic to a disc D, with possible identifications 
of simplices on the boundary K0 of K. We have

χ(K) = χ(K0) + 1.

We emphasize that the important point of our proof is that, from the given triangulation, we provide a 
sub-triangulation such that we can prove the theorem using only Cauchy’s method (section 1.2), without 
using other tools.

Proof of Theorem 2.1 using only Cauchy’s method. Given a polygon K triangulated and homeomorphic to 
a disc in R2 with possible identifications of the simplices on the boundary K0 of K, the proof consists of 
six steps, as follows.

1) Step 1: The first step is to construct a “lifting” of K into a pyramidal shape. Here, we call the 
“pyramid” only the surface (dimension 2) of the pyramid, i.e. the union of the faces of the pyramid without 
the base.

We can assume that the origin 0 of R2 lies inside a 2-dimensional simplex σ0 in the interior of the 
polygon K (see Fig. 10).
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Fig. 10. The triangulation of the polygon K.

Q

Fig. 11. The lifting on the polygon.

Let us consider the Euclidean metric in R2. We can assume that the distances from the origin to the 
vertices of the triangulation are different, otherwise a small perturbation will not change the structure of 
the simplicial complex and the proof of the theorem can be processed in the same way.

Let us denote by a1, a2, a3 the vertices of σ0 and by b1, . . . , bk the vertices of the triangulation of K0. The 
other vertices are denoted by the following way: We call y1 the vertex nearest to the origin 0 and y2, . . . , yn
the vertices in the increasing order of distances from 0 (see Fig. 10).

We construct a pyramid Π in R3 lying above K by fixing the boundary K0 as the base of the pyramid 
in the horizontal plane Q = R2 in R3. For i = 0, . . . , n + 1, we consider the planes Pi parallel to Q having 
distance n − i + 1 relative to the base plane Q in R3. Now, for i = 1, . . . , n, we denote by xi the orthogonal 
projection of the point yi to the plane Pi. In the plane P0, we denote by u1, u2, u3 the orthogonal projections 
of the points a1, a2, a3 (see Fig. 12 (a)).

The triangulation of the polygon induces a triangulation L on the pyramid Π lifting each simplex [bi, yj ]
to [bi, xj ], each [yi, yj ] to [xi, xj ] and each [yi, aj ] to [xi, uj ]. In the same way, we also lift the 2-dimensional 
simplices.

2) Step 2: Let us construct a sub-decomposition L′ of the triangulation L, such that the intersections 
of the planes with the pyramid are triangulated in the following way: Let us define new vertices of L′ as 
the intersection of 1-dimensional simplices of L with the planes Pi. In the same way, we define also new 
1-dimensional simplices of L′ as the intersections of 2-dimensional simplices of L with the planes Pi. The 
decomposition L′ of the pyramid contains vertices, edges (1-dimensional simplices), and faces which can be 
triangles or quadrilaterals. The sum n0 −n1 +n2 is the same for the triangulation L and the decomposition 
L′ (see Fig. 12 (b)).

3) Step 3: Let us define a sub-triangulation L′′ of L in the following way: each quadrilateral is divided 
into two triangles. The sum n0 − n1 + n2 is the same for the triangulations L and L′′ (see Fig. 13).

4) Step 4: We will prove that the intersection of L′′ with each plane Pi is a curve homeomorphic to 
a circle. First, we show that the projection of L′′ to the plane Q provides a sub-triangulation K ′′ of the 
polygon K (Fig. 14). In fact, by construction, since there is no vertical edges in the pyramid, then the 
orthogonal projection π of the pyramid to Q is a bijection between the triangulations L′′ and K ′′. Notice 
that each vertex of K ′′ corresponds to a vertex of L′′ and, in the same way, for the edges and the triangles 
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Fig. 12. The pyramid Π and the decomposition L′ of the pyramid Π.
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Pn+1

Fig. 13. The sub-triangulation L′′ of the pyramid Π.

of K ′′ and L′′, respectively. Moreover, in the subdivision L′′, each edge is the common edge of exactly two 
triangles, and likewise in K ′′. That implies that K ′′ is a triangulation.

Now, we prove, by induction, that the intersection of L′′ with each plane Pi is a curve homeomorphic to 
a circle. We see that L ∩ P0, which is the boundary of the triangle σ0 denoted by B0, is homeomorphic to 
a circle. Assume that Bi is homeomorphic to a circle but Bi+1 is not homeomorphic to a circle. Then L′′
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b1

b6
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b4

b3
b2
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a1
a3

y2

y1

Fig. 14. The sub-triangulation K′′ of the polygon.

Pi+1

Pi

z

z1 z′

z2

z3

Fig. 15. Not admissible picture: The intersection Bi of L with each plane Pi can not have multiple points.

has multiple points in the plane Pi+1 (see Fig. 15). By projection, K ′′ is no longer a triangulation. That 
provides a contradiction.

5) Step 5: Apply Cauchy’s method (section 1.2): Now, let us apply Cauchy’s method on the pyramid 
starting by removing the triangle σ0. Assume that we have already removed all triangles above the plane 
Pi. We will prove that if we remove all the triangles in the band situated between Pi and Pi+1, the sum 
n0 − n1 + n2 does not change. This fact can be established processed since the open band between Bi and 
Bi+1 does not possess vertices, as follows: Let us fix a triangle (α0, α1, β0) of the band between Bi and Bi+1, 
where the vertices α0 and α1 belong to Bi and β0 belongs to Bi+1. First, we remove the triangle (α0, α1, β0)
by operation I, without changing the sum n0 − n1 + n2. Now, the edge (α1, β0) is an edge of either the 
triangle (α1, β0, β1), where β1 ∈ Bi+1 (see Fig. 16 (a)), or of the triangle (α1, α2, β0), where α2 ∈ Bi (see 
Fig. 16 (b)). In the first case, the triangle (α1, β0, β1) can be removed by operation I of Cauchy’s process, 
and in the second case the triangle (α1, α2, β0) can be removed by operation II. In both of these two cases, 
the sum n0 − n1 + n2 is not changed.

We continue the process for all the triangles of the band, all of which are one of two cases above, until 
we reach the last vertices of Bi and Bi+1 situated before going back to α0 and β0, respectively. We call 
these vertices αk and βj . We have two possible situations (a) and (b) (see Fig. 16). In situation (a), the last 
remaining triangles are (αk, α0, βj) and (α0, βj , β0). In this case, these triangles can be removed in this order 
using operation II. In situation (b), the remaining triangles (αk, βj , β0) and (αk, α0, β0) can be removed in 
this order using also operation II. In the two cases, the sum n0 − n1 + n2 is not changed.

6) Step 6: The conclusion.
The process continues until we reach the boundary Bn+1 of the hole, which is the boundary K0 of K, 

and is also the intersection of L′′ with the plane Pn+1.
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⇒
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•
α0 •
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•
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•
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•
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•
β2
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•
•
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•
α0 •

α1

•
α2

•
•
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•
β0

•
β1

•
β2

(b)

Fig. 16. Going from Bi to Bi+1.

Let us denote by nK
0 , nK

1 and nK
2 respectively the numbers of vertices, edges and triangles of the trian-

gulation K and let us use the same notation for the sub-triangulation K ′′ and the triangulation K0. We 
have

nK
0 − nK

1 + nK
2 = nK′′

0 − nK′′

1 + nK′′

2 = nK0
0 − nK0

1 + 1.

The first equality follows from the fact that the sub-triangulation process does not change the alternating 
sum and the second equality comes from the fact that we removed the triangle σ0 at the beginning and that 
nK0

2 = 0. Here we take the identifications of simplices of K0 into account.
Given a triangulation K of the polygon, the result does not depend on the choices made. �

Proof of Theorem 1.1 using Cauchy’s method. Let K̂ be a convex polyhedron. We proceed with the planar 
representation K of K̂, according to the first step of Cauchy’s proof (see Fig. 2). Notice that K is a polygon 
without any identification of simplices on its boundary K0. Then nK0

0 −nK0
1 +nK0

2 = 0. Theorem 2.1 implies 
that nK̂

0 − nK̂
1 + nK̂

2 = +2, taking into account the removed polygon P in the first step of Cauchy’s proof. 
Since Theorem 2.1 is proved using only Cauchy’s method, then Euler’s formula is also proved by using only 
Cauchy’s method. �

Before going further with applications, let us provide some remarks on the proof of Theorem 2.1.

Remark 2.2. The stereographic projection proof of Euler’s formula is a particular case of the proof.

Remark 2.3. There are other ways to define an order of the vertices of the polygon to be able to draw the 
pyramid, without using the Euclidean distance in R2.

One possible way is the use of notion of distance between two vertices as the least number of edges in an 
edge path joining them. As in the proof of Theorem 2.1, choose a 2-dimensional simplex σ0 in the interior 
of the polygon K and define distance 0 for the three vertices of σ0. Determining any order between vertices 
whose distance to vertices of σ0 is 1, one continues the ordering determining any order between vertices 
whose distance to vertices of σ0 is 2, etc. Then one proceeds with the construction of the pyramid.

Another way would be to start the proof of Theorem 1.1 with the convex polyhedron and order the 
2-dimensional faces according to the shelling process (see [34] and [2]). The 2-dimensional faces of the 
polyhedron are dual to the vertices of the polar polyhedron. One obtains an order on the vertices of the 
polar polyhedron. One continues the proof using the polar polyhedron instead of the original polyhedron, 
knowing that the sum n0 − n1 + n2 is the same for the polyhedron and its polar. However, the shelling is a 
tool which was defined well after Cauchy’s time, so it is not acceptable in our context. We mention it just 
for the sake of completeness.
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Remark 2.4. In step 4 of the proof, the projection on the plane Q of the intersection of each plane Pi with the 
pyramid is a Jordan curve passing through yi. Moreover, in step 5 of our proof, we make it clear that if the 
boundary of the extended hole is homeomorphic to a circle, then Cauchy’s process works. It is then possible 
to proceed in step 5 either with the sub-triangulation L′′ of the pyramid or with the sub-triangulation K ′′

of the polygon K.

Remark 2.5. In step 5 of the proof we use only the operations I and II of Cauchy. Observing that if we 
change the order of removal of the last remaining triangles, for example, in situation (a), if we remove the 
triangle (α0, βj , β0) and thereafter the triangle (αk, α0, βj), we will use first operation I of Cauchy and then 
the operation that we called operation III in section 1.3 (see Fig. 6 (d)). Here also, we do not change the 
sum n0 − n1 + n2.

Remark 2.6. As we emphasized at the beginning of this section, we use in the proof only Cauchy’s method 
(section 1.2) without other tools. We know very well that there exist “modern and faster” ways to prove 
Theorem 2.1. However, these proofs use tools that appeared after Cauchy’s time, in particular some proofs 
use the Jordan Lemma, which, as we have seen, appears as an artifact in our proof.

3. Applications

In the following, using Theorem 2.1 as the main tool, we prove that the sum n0 − n1 + n2 does not 
depend on the triangulation in the case of the sphere, the torus, the projective plane, the Klein bottle and 
even for a singular surface: the pinched torus. In each case, we use a planar representation of the surface 
homeomorphic to a disc with possible identifications on the boundary, and the following lemma concerning 
the “cutting surfaces” technique that was introduced by Alexander Veblen in a seminar in 1915 (see [1]). 
This idea is well developed in the book by Hilbert and Cohn-Vossen [18], in particular for the surfaces that 
we give as examples.

The following “cutting” lemma will be used in the forthcoming proofs.

Lemma 3.1. Let T be a triangulation of a compact surface. Let Γ be a continuous simple curve in S. There 
exists a sub-triangulation T ′ of T , with curvilinear simplices, compatible with the curve (that means Γ is an 
union of segments of T ′) in such the way that the number n0 − n1 + n2 is the same for T and T ′.

Proof. First of all, we can assume that the curve Γ is transversal to all the edges of T , i.e. the intersection 
of Γ with each edge is a finite number of points. Otherwise, a small perturbation of Γ allows us to obtain 
transversality.

We choose a base point (the starting point) x0 on the curve, as well as an orientation of the curve. If the 
curve is not closed, we define the base point as one of the two extremities. The following process does not 
depend on either the starting point, or the orientation of the curve.

A sub-triangulation T ′ is built simplex by simplex following the orientation of the curve Γ. The first 
subdivided simplex is the one σ0 containing the base point. Let y be the first point where the curve leaves 
σ0. The (curvilinear) segment (x0, y) will be an edge of T ′ as well as segments connecting x0 to vertices of 
σ0, one of which can be (x0, y) if the point y is a vertex of σ0 (Fig. 17).

Now, it is enough to perform the construction for a simplex σ = (a, b, c) the curve Γ enters. In the 
following construction, we assume that all the simplices that the curve meets between the base point and 
the simplex σ (with the given orientation) are already subdivided. The “entry” point of Γ in the simplex σ
can be either a vertex or a point d located on an edge of σ.

If the entry point of the curve Γ is a vertex a, the curve can exit at a point d located either in the 
opposite edge, or in an edge containing the vertex a, or at another vertex. In the first case (Fig. 18 (i)), we 
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Fig. 17. Subdivision of the first simplex I.
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Fig. 18. Subdivision II.
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Fig. 19. Subdivision III.

divide the triangle (a, b, c) into two (curvilinear) triangles (a, b, d) and (a, d, c). In the second case (Fig. 18
(ii)), let e ∈ (a, c) be the point at which the curve Γ exits from the triangle and we choose a point f on 
the curve, located between a and e. We divide the triangle (a, b, c) into four (curvilinear) triangles (a, b, f), 
(b, f, e), (b, e, c) and (a, f, e). Finally, in the last case (Fig. 18 (iii)), assume that the exit point is the vertex 
c, we choose one point f on the curve, located between a and c. We divide the triangle (a, b, c) into three 
(curvilinear) triangles (a, b, f), (b, f, c) and (a, f, c).

Notice that, in all the three cases, the choice of sub-triangulation is not unique, but the sum n0−n1 +n2
remains unchanged independent of the choice.

If the entry point of the curve Γ is located in one edge, we denote by d the entry point and by (a, c) the 
edge of σ containing d. The next exit point of Γ can be either in an edge different from (a, c) (for example 
(a, b)), or in the same edge (a, c), or it can be a vertex (see Fig. 19).

In the first case (Fig. 19 (i)), we define, for example, a sub-triangulation of the triangle (a, b, c) formed 
by the (curvilinear) triangles (a, d, e), (c, e, d) and (c, e, b).

In the second case, for example if the curve Γ enters and exits by two points d and e situated on the 
same segment (a, c), we choose a point f on the curve located between d and e (Fig. 19 (ii)). We define 
a sub-triangulation of the triangle (a, b, c) formed by five (curvilinear) triangles (a, b, d), (b, d, f), (b, f, e), 
(b, e, c) and (d, f, e).

The two last cases of Fig. 19 (iii) and (iv)) are similar to the cases of Fig. 18 (ii) and (i) respectively.
In the four cases, the choice of sub-triangulations is not unique, but the sum n0 − n1 + n2 remains 

unchanged independent of the choice.
The process continues for all the 2-dimensional simplices crossed by the curve Γ, and it is completed in 

a finite number of steps because the number of simplices is finite, even after the subdivision. �
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Fig. 20. Planar representation of the sphere.

3.1. The sphere case

In the following, we provide an alternating proof of Euler’s formula for the sphere using Theorem 2.1 as 
the main tool, with the idea of “cutting surfaces” as an additional tool.

Let T be a triangulation of the sphere S2. We consider four curves on the sphere: The equator E (or 
any parallel) and three curves γ1, γ2 and γ3, going from the North pole N to the curve E along meridians. 
Let us denote by ai the intersection points γi ∩ E, where i = 1, 2, 3. Using Lemma 3.1 we can construct a 
subdivision T ′ of the triangulation T compatible with the four curves, i.e. such that the union of the four 
curves is a subcomplex of T ′. By Lemma 3.1, the sum n0 − n1 + n2 remains the same.

Now, we cut the sphere along the curves γ1, γ2 and γ3, in such a way that the projection provides a 
polygon K in the plane containing the equator (see Fig. 20). Notice that the projection of T ′ gives us a 
sub-triangulation K ′ of K. We obtain a planar representation of the sphere, homeomorphic to a disc with 
identifications of the simplices on the boundary K0 of K corresponding to the cuts.

Theorem 2.1 states that the sum nT
0 −nT

1 +nT
2 of the triangulation T is equal to the sum nK0

0 −nK0
1 +1, 

where the sum nK0
0 −nK0

1 is calculated by the boundary of the figure. Notice that, using the same notation 
on the sphere and on the planar representation, the vertex N is common to all the curves γi and must be 
identified. Beside this vertex N , the number of vertices in each curve γi is equal to the number of edges 
(see Fig. 20). Then for the boundary of the planar representation, we have nK0

0 − nK0
1 = +1 and for the 

triangulation, we have

nT
0 − nT

1 + nT
2 = +2.
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Fig. 21. Sub-triangulation T ′ of T .
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Fig. 22. A planar representation of torus.

3.2. The torus case

Let T be a triangulation of the torus T = S1 × S1. We choose a meridian M = S1 × {0} and a parallel 
P = {0} × S1. They cross at one point A = {0} × {0}. Observe that, without loss of generality, we can 
choose them transversally to all the edges (1-dimensional simplices of T ). We define a sub-triangulation T ′

of T , in the following way (see Fig. 21): Each triangle σ (2-dimensional simplex) of T meeting M or P is 
divided in such the way that σ∩M (or σ∩P ) is an edge of T ′. Lemma 3.1 implies that the sum n0−n1 +n2
remains the same for T and T ′.

Now, cutting the torus along M and P , we obtain a planar representation K of the torus which is 
homeomorphic to a disc, with identifications on the boundary K0 corresponding to the cuts (see Fig. 22). 
Hence, by Lemma 3.1, the number n0 − n1 + n2 remains unchanged. Using Theorem 2.1, we have:

nT
0 − nT

1 + nT
2 = nT ′

0 − nT ′

1 + nT ′

2 = nK
0 − nK

1 + nK
2 = nK0

0 − nK0
1 + 1.

Now, with the identifications on the boundary K0, we have nK0
1 = nK0

0 + 1. Finally

nT
0 − nT

1 + nT
2 = 0

for any triangulation of the torus.
The same proof holds for the torus of genus g. For example, let us take a torus of genus 3. Given a 

triangulation T of the torus, we fix a point A and around each “hole” of the torus, we fix a “meridian” 
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Fig. 23. Planar representation of the torus of genus 3. In order to have a light figure, we did not draw a triangulation T ′ in such a 
way that each edge ai and bi are subdivided in at least three segments.
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Fig. 24. Triangulation T of the projective plane. Sub-triangulation T ′ of T .

(a1, a2, a3 in Fig. 23) and a “parallel” (b1, b2, b3 in Fig. 23). We construct a sub-triangulation T ′ of T by 
the same methods as in the case of the torus. Cutting the torus of genus 3 along the meridians and the 
parallels, we obtain a planar representation of the torus of genus 3, triangulated by the triangulation T ′. 
By the same procedure as in the torus case, one obtains n0 −n1 +n2 = −4. This is an example of Lhuilier’s 
formula (1.4).

3.3. The projective plane case

The projective plane is represented by a sphere whose diametrically opposite points are identified. A 
triangulation of the projective plane is given by a triangulation of the sphere which is symmetric with 
respect to the center of the sphere. Let us consider the sphere in R3 (see Fig. 24 (a)) and let T be such a 
triangulation of the projective plane.

The intersection of T with the equator defines a triangulation J of the equator that is symmetric with 
respect to the center of the sphere. Let us define a sub-triangulation T ′ of T such that simplices of J are 
simplices of T ′ and such that T ′ is symmetric with respect to the center of the sphere (see Fig. 24 (b)). By 
the Lemma 3.1, the sum n0 − n1 + n2 is the same for T and T ′.

Now, the orthogonal projection of the northern hemisphere to the plane 0xy provides a triangulation 
of the disc D of radius 1, centered at the origin, whose triangulation of the boundary is symmetric with 
respect to the center of the disc. With the identification of simplices, we have n0 − n1 = 0 on the boundary 
(Fig. 25). Then, by Theorem 2.1, we have

nT
0 − nT

1 + nT
2 = +1
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Fig. 25. A planar representation of the projective plane.

Fig. 26. The Klein bottle and cuts (the meridian M is in blue and the parallel P is in red).
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Fig. 27. A planar representation of the Klein bottle.

for any triangulation of the projective plane.

3.4. The Klein bottle case

The case of Klein bottle is similar to the case of torus. Given a triangulation T of the Klein bottle, we 
choose a meridian M and a parallel P (see Fig. 26). Let us define a sub-triangulation T ′ of T compatible 
with M and P . The cut along M and P provides a planar representation of the Klein bottle as a rectangle 
triangulated with identifications on the boundary (see Fig. 27). On the boundary, we have n1 = n0 + 1. 
Then, by Theorem 2.1, we have

nT
0 − nT

1 + nT
2 = 0

for any triangulation of the Klein bottle.
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Fig. 28. The pinched torus and cut.
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Fig. 29. A planar representation of the pinched torus.

3.5. The pinched torus case

Not every surface with singularities admits a planar representation. The pinched torus is an example of 
a singular surface that does admit such a planar representation.

Let us recall that the pinched torus is a surface in R3 defined by the following cartesian parameterization:

⎧⎪⎪⎨
⎪⎪⎩
x =

(
r1 + r2 cos(v) cos

( 1
2u

))
cos(u)

y =
(
r1 + r2 cos(v) cos

( 1
2u

))
sin(u)

z = r2 sin(v) cos
( 1

2u
)

where r1 and r2 are respectively the large and small radii (see Fig. 28).
Let T be a triangulation of the pinched torus. We choose a “parallel” P passing through the singular 

point A of the pinched torus and we define a sub-triangulation T ′ of T compatible with P using Lemma 3.1. 
By cutting along P , one obtains a planar representation of the pinched torus (Fig. 29) with identifications 
on the boundary. One observes that the point A is duplicated. On the boundary, we have n0 − n1 = 0. 
Then, by Theorem 2.1, we have

nT
0 − nT

1 + nT
2 = +1

for any triangulation of the pinched torus.
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